Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:48:17.106Z Has data issue: false hasContentIssue false

Thermonuclear burst oscillations and the dense matter equation of state

Published online by Cambridge University Press:  04 June 2018

Anna L. Watts*
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090GE Amsterdam, the Netherlands email: A.L.Watts@uva.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Matter in neutron star cores reaches extremely high densities, forming states of matter that cannot be generated in the laboratory. The Equation of State (EOS) of the matter links to macroscopic observables, such as mass M and radius R, via the stellar structure equations. A promising technique for measuring M and R exploits hotspots (burst oscillations) that form on the stellar surface when material accreted from a companion star undergoes a thermonuclear explosion. As the star rotates, the hotspot gives rise to a pulsation, and relativistic effects encode information about M and R into the pulse profile. However the burst oscillation mechanism remains unknown, introducing uncertainty when inferring the EOS. I review the progress that we are making towards cracking this long-standing problem, and establishing burst oscillations as a robust tool for measuring M and R. This is a major goal for future large area X-ray telescopes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Cavecchi, Y., Watts, A. L., Braithwaite, J., & Levin, Y., 2013, MNRAS, 30, 490Google Scholar
Cavecchi, Y., Watts, A. L., Levin, Y., & Braithwaite, J., 2015, MNRAS, 448, 445Google Scholar
Cavecchi, Y., Levin, Y., Watts, A. L., & Braithwaite, J., 2016, MNRAS, 459, 1259Google Scholar
Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D., 2008, ApJS, 179, 360Google Scholar
Hebeler, K., Holt, J.D., Menéndez, J., & Schwenk, A. 2015 Annual Review of Nuclear and Particle Science, 65, 457Google Scholar
Lo, K. H., Miller, M. C., Bhattacharyya, S., & Lamb, F. K., 2013, ApJ, 776, 19Google Scholar
Ootes, L. S., Watts, A. L., Galloway, D. K., & Wijnands, R., 2017, ApJ, 834, 21Google Scholar
Chatterjee, D., & Vidaña, I., 2016, The European Physical Journal A, 52, 29Google Scholar
Heyl, J. S., 2004, ApJ, 600, 939Google Scholar
Srohmayer, T. E., Zhang, W., Swank, J. H., Smale, A., Titarchuk, L., Day, C., & Lee, U., 1996, ApJ Letters, 469, L9Google Scholar
Strohmayer, T. E. & Bildsten, L. 2006, in: Lewin, W. & van der Klis, M. (eds.), Compact stellar X-ray sources, Cambridge Astrophysics Series No. 39 (Cambridge University Press), p. 113Google Scholar
Watts, A. L., 2012, ARAA, 50, 609Google Scholar
Watts, A. L., et al. 2016, Reviews of Modern Physics, 88, 021001Google Scholar