Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T22:20:32.156Z Has data issue: false hasContentIssue false

There Are (super)Giants in the Sky: Searching for Misidentified Massive Stars in Algorithmically-Selected Quasar Catalogs

Published online by Cambridge University Press:  28 July 2017

Trevor Z. Dorn-Wallenstein
Affiliation:
Astronomy Department, University of Washington, Physics and Astronomy Building, 3910 15th Ave NE, Seattle, WA 98105, USA email: tzdw@uw.edu, emsque@uw.edu
Emily Levesque
Affiliation:
Astronomy Department, University of Washington, Physics and Astronomy Building, 3910 15th Ave NE, Seattle, WA 98105, USA email: tzdw@uw.edu, emsque@uw.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thanks to incredible advances in instrumentation, surveys like the Sloan Digital Sky Survey have been able to find and catalog billions of objects, ranging from local M dwarfs to distant quasars. Machine learning algorithms have greatly aided in the effort to classify these objects; however, there are regimes where these algorithms fail, where interesting oddities may be found. We present here an X-ray bright quasar misidentified as a red supergiant/X-ray binary, and a subsequent search of the SDSS quasar catalog for X-ray bright stars misidentified as quasars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Crowther, P. A., Barnard, R., Carpano, S., et al. 2010, MNRAS, 403, L41 CrossRefGoogle Scholar
Dalcanton, J. J., Williams, B. F., Lang, D., et al. 2012, ApJS, 200, 18 CrossRefGoogle Scholar
Davidsen, A., Malina, R., & Bowyer, S., 1977, ApJ, 211, 866 CrossRefGoogle Scholar
Evans, I. N., Primini, F. A., Glotfelty, K. J., et al. 2010, ApJS, 189, 3782 CrossRefGoogle Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J., 2013, PASP, 125, 306 CrossRefGoogle Scholar
Gordon, K. D., Fouesneau, M., Arab, H., et al. 2016, ApJ, 826, 104 CrossRefGoogle Scholar
Heida, M., Jonker, P. G., Torres, M. A. P., et al. 2016, MNRAS, 459, 771 CrossRefGoogle Scholar
Jennings, J. & Levesque, E. M., 2016, ApJ, 821, 131 CrossRefGoogle Scholar
Kim, S. C., Lee, M. G., Geisler, D., et al. 2007, AJ, 134, 706 CrossRefGoogle Scholar
Levesque, E. M., Massey, P., Olsen, K. A. G., et al. 2006, ApJ, 645, 1102 CrossRefGoogle Scholar
Massey, P., 1998, ApJ, 501, 153 CrossRefGoogle Scholar
Massey, P. & Olsen, K. A. G., 2003, AJ, 126, 2867 CrossRefGoogle Scholar
Massey, P., Olsen, K. A. G., Hodge, P. W., et al. 2006, AJ, 131, 2478 CrossRefGoogle Scholar
Massey, P., Olsen, K. A. G., Hodge, P. W., et al. 2007, AJ, 133, 2393 CrossRefGoogle Scholar
Richards, G. T., Hall, P. B., Vanden Berk, D. E., et al. 2003, AJ, 126, 1131 CrossRefGoogle Scholar
Taam, R. E., Bodenheimer, P., & Ostriker, J. P., 1978, ApJ, 222, 269 CrossRefGoogle Scholar
Thorne, K. S., Żytkow, A. N., 1975, ApJL, 199, L19 CrossRefGoogle Scholar
Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, AJ, 122, 549 CrossRefGoogle Scholar
van Loon, J. T., Cioni, M.-R. L., Zijlstra, A. A., & Loup, C., 2005, A&A, 438, 273 Google Scholar
Vilardell, F., Ribas, I., & Jordi, C., 2006, A&A, 459, 321 Google Scholar
Villar, V. A., Berger, E., Chornock, R., et al. 2016, ApJ, 830, 11 CrossRefGoogle Scholar
Wang, S., Ma, J., Wu, Z., & Zhou, X., 2014, AJ, 148, 4 CrossRefGoogle Scholar
West, A. A., Morgan, D. P., Bochanski, J. J., et al. 2011, AJ, 141, 97 CrossRefGoogle Scholar
York, D. G., Adelman, J., Anderson, J. E. Jr, et al. 2000, AJ, 120, 1579 CrossRefGoogle Scholar