Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T22:49:14.771Z Has data issue: false hasContentIssue false

The theory of young cluster disruption

Published online by Cambridge University Press:  27 April 2011

Simon P. Goodwin*
Affiliation:
Dept. of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK email: s.goodwin@sheffield.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most stars seem to form in clusters, but the vast majority of these clusters do not seem to survive much beyond their embedded phase. The most favoured mechanism for the early destruction of star clusters is the effect of the removal of residual gas by feedback which dramatically changes the cluster potential. The effects of feedback depend on the ratio of the masses of stars and gas, and the velocity dispersion of the stars at the onset of gas removal. As gas removal is delayed by a few Myr from star formation these crucial parameters can change significantly from their initial values. In particular, in dynamically cool and clumpy clusters, the stars will collapse to a far denser state and if they decouple from the gas then gas removal may be far less destructive than previously thought. This might well help explain the survival of very massive clusters, such as globular clusters, without the need for extremely high star formation efficiencies or initial masses far greater than their current masses.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Allen, L., Megeath, S. T., Gutermuth, R., Myers, P. C., Wolk, S., Adams, F. C., Muzerolle, J., Young, E., & Pipher, J. L. 2007, in ‘Protostars and Planets V’ eds. Reipurth, B., Jewitt, D. & Keil, K. (University of Arizona Press: Tuscon), p 361Google Scholar
Allison, R. J., Goodwin, S. P., Parker, R. J., de Grijs, R., Portegies Zwart, S. F., & Kouwenhoven, M. B. N. 2009, ApJ, 700, L99CrossRefGoogle Scholar
Allison, R. J., Goodwin, S. P., Parker, R. J., Portegies Zwart, S. F., & de Grijs, R. 2010, MNRAS, in press (arXiv:1004.5244)Google Scholar
Bastian, N. & Goodwin, S. P. 2006, MNRAS, 369, L9CrossRefGoogle Scholar
Baumgardt, H. & Kroupa, P. 2007, MNRAS, 380, 1589CrossRefGoogle Scholar
Bergin, E. & Tafalla, M. 2007, ARAA, 45, 339CrossRefGoogle Scholar
Bertout, C. & Genova, F. 2006; A&A, 460, 499Google Scholar
Boily, C. M. & Kroupa, P. 2003a, MNRAS, 338, 643Google Scholar
Boily, C. M. & Kroupa, P. 2003a, MNRAS, 338, 673CrossRefGoogle Scholar
Chen, H. & Ko, C. 2009, ApJ, 698, 1659CrossRefGoogle Scholar
Clarke, C. J. 2010, RSPTA, 368, 733Google Scholar
Elmegreen, B. G. 1983, MNRAS, 203, 1011CrossRefGoogle Scholar
Elmegreen, B. G. & Clemens, C. 1985, ApJ, 294, 523CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 2001, AJ, 121, 1507CrossRefGoogle Scholar
Elmegreen, B. G. 2004, ARAA, 42, 211CrossRefGoogle Scholar
de Grijs, R. 2010, RSPTA, 368, 693Google Scholar
Goodwin, S. P. 1997a, MNRAS, 284, 785CrossRefGoogle Scholar
Goodwin, S. P. 1997b, MNRAS, 286, 669CrossRefGoogle Scholar
Goodwin, S. P. & Bastian, N. 2006, MNRAS, 373, 752CrossRefGoogle Scholar
Goodwin, S. P. 2009, Ap&SS, 324, 259Google Scholar
Goodwin, S. P. 2010, RSPTA, 368, 851Google Scholar
Gutermuth, R. A., Megeath, S. T., Myers, P. C., Allen, L. E., Pipher, J. L. & Fazio, G. G. 2009, ApJS, 184, 18CrossRefGoogle Scholar
Gyer, M. P. & Burkert, A. 2001, MNRAS, 323, 988CrossRefGoogle Scholar
Hills, J. G. 1980, ApJ, 235, 986CrossRefGoogle Scholar
Kraus, A. & Hillenbrand, L. 2008, ApJ, 686, L111CrossRefGoogle Scholar
Lada, C. J., Margulis, M. & Dearborn, D. 1984, ApJ, 285, 141CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARAA, 41, 57CrossRefGoogle Scholar
Lada, C. J. 2010, RSPTA, 368, 713Google Scholar
Larsen, S. S. 2010, RSPTA, 368, 867Google Scholar
McKee, C. & Ostriker, E. 2007, ARAA, 45, 565CrossRefGoogle Scholar
Maschberger, Th., Clarke, C. J., Bonnell, I. A. & Kroupa, P. 2010, MNRAS, 404, 1061CrossRefGoogle Scholar
Mathieu, R. D. 1983, ApJ, 267, 97CrossRefGoogle Scholar
Moeckel, N. & Bate, M. R. 2010, MNRAS, 404, 721CrossRefGoogle Scholar
Parmentier, G., Goodwin, S. P., Kroupa, P. & Baumgardt, H. 2008, ApJ, 678, 347CrossRefGoogle Scholar
Pinto, F. 1987, PASP, 99, 1161CrossRefGoogle Scholar
Porras, A., Christopher, M., Allen, L., Di Francesco, J., Megeath, S. T., & Myers, P. C. 2003, ApJ, 126, 1916CrossRefGoogle Scholar
Tutukov, A. V. 1978, A&A, 70, 57Google Scholar
Verschueren, W. & David, M. 1989, A&A, 219, 105Google Scholar