Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:40:42.678Z Has data issue: false hasContentIssue false

Theory of Protostellar Disk Formation

Published online by Cambridge University Press:  12 September 2016

Zhi-Yun Li
Affiliation:
Astronomy Department, University of Virginia email: zl4h@virginia.edu
Ruben Krasnopolsky
Affiliation:
Academia Sinica, Institute of Astronomy and Astrophysics and Theoretical Institute for Advanced Research in Astrophysics, Taiwan
Hsien Shang
Affiliation:
Academia Sinica, Institute of Astronomy and Astrophysics and Theoretical Institute for Advanced Research in Astrophysics, Taiwan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

How large, 100-AU scale, rotationally supported disks form around protostars remains unsettled, both observationally and theoretically. In this contribution, we discuss the theoretical difficulties with disk formation in the presence of a dynamically significant magnetic field and their possible resolutions. These difficulties are caused by the concentration of magnetic field lines close to the forming star by protostellar collapse, and the strong magnetic braking associated with the concentrated field. Possible resolutions include magnetic field-rotation axis misalignment, non-ideal MHD effects, and turbulence. The field-rotation misalignment has been shown to promote disk formation, especially when the field is relatively weak and the misalignment angle is relatively large. Non-ideal MHD effects can enable the formation of small disks at early times. How such disks grow at later times remains to be fully quantified. Turbulence has been found to enable disk formation in a number of simulations, but the exact reason for its beneficial effect is debated.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Allen, A., Li, Z.-Y., & Shu, F. H. 2003, ApJ, 599, 363 Google Scholar
Armitage, P. J. 2011, ARAA, 49, 195 Google Scholar
Bertram, E., Federrath, C., Banerjee, R., & Klessen, R. S. 2012, MNRAS, 420, 3163 Google Scholar
Boss, A. P. & Keiser, S. A. 2013, ApJ, 764, 136 Google Scholar
Braiding, C. R. & Wardle, M. 2012, MNRAS, 422, 261 Google Scholar
Braiding, C. R. & Wardle, M. 2012, MNRAS, 427, 3188 Google Scholar
Burkert, A. & Bodenheimer, P. 2000, ApJ, 543, 822 Google Scholar
Chapman, N. L., Davidson, J. A., Goldsmith, P. F. et al. 2013, ApJ, 770, 151 Google Scholar
Ciardi, A. & Hennebelle, P. 2010, MNRAS, 409, L39 Google Scholar
Ciolek, G. E. & Königl, A. 1998, ApJ, 504, 257 Google Scholar
Contopoulos, I., Ciolek, G. E., & Königl, A. 1998, ApJ, 504, 247 Google Scholar
Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., & Troland, T. H. 2010, ApJ, 725, 466 Google Scholar
Crutcher, R. M. 2012, ARAA, 50, 29 CrossRefGoogle Scholar
Dapp, W. B. & Basu, S. 2010, AA, 521, 56 Google Scholar
Dapp, W. B., Basu, S., & Kunz, M. W. 2012, AA, 541, A35 Google Scholar
Davidson, J. A., Novak, G., Matthews, T. G. et al. 2011, ApJ, 732, 97 Google Scholar
Dedner, A., et al. 2002, Journal of Computational Physics, 175, 645 CrossRefGoogle Scholar
Duffin, D. F. & Pudritz, R. E. 2009, MNRAS, 391, 1659 Google Scholar
Duffin, D. F. & Pudritz, R. E. 2009, ApJL, 706, L46 Google Scholar
Galli, D., Lizano, S., Shu, F. H., & Allen, A. 2006, ApJ, 647, 374 Google Scholar
Hennebelle, P. & Ciardi, A. 2009, AA, 506, L29 Google Scholar
Hennebelle, P. & Fromang, S. 2008, AA, 477, 9 Google Scholar
Hosking, J. G. & Whitworth, A. P. 2004, MNRAS, 347, 1001 Google Scholar
Hull, C. L. H., Plambeck, R. L., Bolatto, A. D. et al. 2013, ApJ, 768, 159 Google Scholar
Joos, M., Hennebelle, P., & Ciardi, A. 2012, AA, 543, A128 Google Scholar
Joos, M., Hennebelle, P., Ciardi, A., & Fromang, S. 2013, AA, 554, A17 Google Scholar
Krasnopolsky, R. & Königl, A. 2002, ApJ, 580, 987 Google Scholar
Krasnopolsky, R., Li, Z.-Y., & Shang, H. 2010, ApJ, 716, 1541 Google Scholar
Krasnopolsky, R., Li, Z.-Y., & Shang, H. 2011, ApJ, 733, 54 Google Scholar
Krumholz, M. R., Crutcher, R. M., & Hull, C. L. H. 2013, ApJL, 767, L11 Google Scholar
Kunz, M. W. & Mouschovias, T. C. 2010, MNRAS, 408, 322 Google Scholar
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2011, ApJ, 738, 180 Google Scholar
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2013, ApJ, 774, 82 Google Scholar
Li, Z.-Y., Krasnopolsky, R., Shang, H., & Zhao, B. 2014, ApJ, 793, 130 Google Scholar
Li, Z.-Y. & McKee, C. F. 1996, ApJ, 464, 373 Google Scholar
Machida, M. N., Inutsuka, S.-i., & Matsumoto, T. 2006, ApJL, 649, L129 Google Scholar
Machida, M. N., Inutsuka, S.-i., & Matsumoto, T. 2011, PASJ, 63, 555 Google Scholar
Machida, M. N. & Matsumoto, T. 2011, MNRAS, 413, 2767 Google Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125 Google Scholar
Masson, J., Chabrier, G., Hennebelle, P., Vaytet, N., & Commerçon, B. 2015, AA, in press.Google Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARAA, 45, 565 Google Scholar
Mellon, R. R. & Li, Z.-Y. 2008, ApJ, 681, 1356 Google Scholar
Mellon, R. R. & Li, Z.-Y. 2009, ApJ, 698, 922 Google Scholar
Men'shchikov, A., et al. 2010, AA, 518, L103 Google Scholar
Molinari, S., et al. 2010, AA, 518, L100 Google Scholar
Mouschovias, T. C., & Ciolek, G. E. 1999 in: Magnetic Fields and Star Formation: A Theory Reaching Adulthood, (edited by Lada, C. J. and Kylafis, N. D.), 305Google Scholar
Myers, A. T., McKee, C. F., Cunningham, A. J., Klein, R. I., & Krumholz, M. R. 2013, ApJ, 766, 97 Google Scholar
Nakano, T. 1984, Fundamentals of Cosmic Physics, 9, 139 Google Scholar
Nakano, T., Nishi, R., & Umebayashi, T. 2002, ApJ, 573, 199 Google Scholar
Nishi, R., Nakano, T., & Umebayashi, T. 1991, ApJ, 368, 181 Google Scholar
Padovani, M., Hennebelle, P., & Galli, D. 2013, AA, 560, A114 Google Scholar
Padovani, M., Galli, D., Hennebelle, P., Commerçon, B., & Joos, M. 2014, AA, 571, A33 Google Scholar
Santos-Lima, R., de Gouveia Dal Pino, E. M., & Lazarian, A. 2012, ApJ, 747, 21 Google Scholar
Santos-Lima, R., de Gouveia Dal Pino, E. M., & Lazarian, A. 2013, MNRAS, 429, 3371 Google Scholar
Seifried, D., Pudritz, R. E., Banerjee, R. et al. 2012, MNRAS, 422, 347 Google Scholar
Seifried, D., Banerjee, R., Pudritz, R. E., & Klessen, R. S. 2012, MNRAS, 423, L40 Google Scholar
Seifried, D., Banerjee, R., Pudritz, R. E. et al. 2013, MNRAS, 432, 3320 Google Scholar
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARAA, 25, 23 Google Scholar
Shu, F. H., Galli, D., Lizano, S., & Cai, M. 2006, ApJ, 647, 382 Google Scholar
Tassis, K. & Mouschovias, T. C. 2007, ApJ, 660, 388 Google Scholar
Tomida, K., Tomisaka, K., Matsumoto, T., Hori, Y., et al. 2013, ApJ, 763, 6 Google Scholar
Tomida, K., Okuzumi, S., & Machida, M. N. 2015, ApJ, 801, 117 Google Scholar
Tomisaka, K. 1998, ApJL, 502, L163 Google Scholar
Troland, T. H. & Crutcher, R. M. 2008, ApJ, 680, 457 Google Scholar
Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., & Inutsuka, S. 2015, ApJ, 810, L26 Google Scholar
Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., & Inutsuka, S. 2015, MNRAS, 452, 278 Google Scholar
Wardle, M. & Ng, C. 1999, MNRAS, 303, 239 Google Scholar