Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T12:09:03.306Z Has data issue: false hasContentIssue false

Testing white dwarf cosmochronology using wide double white dwarfs

Published online by Cambridge University Press:  09 October 2020

Tyler Heintz
Affiliation:
Institute for Astrophyiscal Research, Boston University, 725 Commonwealth Ave, BostonMA02215, USA
JJ Hermes
Affiliation:
Institute for Astrophyiscal Research, Boston University, 725 Commonwealth Ave, BostonMA02215, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a sample of nearly 650 widely separated double white dwarf binaries found using Gaia DR2 astrometry. We derive preliminary total ages for each white dwarf in our sample using Gaia photometry and compare the total ages of both components of each binary in our sample. We find agreement within 3 sigma between the two ages ∼85% of the time with median age uncertainties of ∼3.5 Gyr depending on which initial-final mass relation is used. When a subsample with the most precise ages is used, the agreement within 3 sigma drops to ∼70% with median age uncertainties of 300-600 Myr.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bergeron, P., Wesemael, F., Dufour, P., et al. 2011, ApJ, 737, 28CrossRefGoogle Scholar
Catalán, S., Isern, J., Garca-Berro, E., & Ribas, I. 2008, MNRAS, 387, 1693CrossRefGoogle Scholar
Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102CrossRefGoogle Scholar
Correa-Otto, J. A., Calandra, M. F., & Gil-Hutton, R. A. 2017, A&A, 600, A59Google Scholar
Cummings, J. D., Kalirai, J. S., Tremblay, P. E., Ramirez-Ruiz, E., & Choi, J. 2018, ApJ, 866, 21CrossRefGoogle Scholar
Dotter, A. 2016, ApJS, 222, 8CrossRefGoogle Scholar
El-Badry, K. & Rix, H.-W. 2018, MNRAS, 480, 4884CrossRefGoogle Scholar
Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409CrossRefGoogle Scholar
Fouesneau, M., Rix, H.-W., von Hippel, T., Hogg, D. W., & Tian, H. 2019, ApJ, 866, 21Google Scholar
Gentile Fusillo, N. P., Tremblay, P.-E., Gänsicke, B. T., et al. 2019, MNRAS, 482, 4570CrossRefGoogle Scholar
Kilic, M., Bergeron, P., Dame, K., et al. 2019, MNRAS, 482, 965CrossRefGoogle Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3CrossRefGoogle Scholar
Paxton, B., Cantiello, M., Arras, P. et al. 2013, ApJS, 208, 4CrossRefGoogle Scholar
Paxton, B., Marchant, P., Schwab, J. et al. 2015, ApJS, 220, 15CrossRefGoogle Scholar
Salaris, M., Serenelli, A., Weiss, A., & Miller Bertolami, M. 2009, ApJ, 692, 1013CrossRefGoogle Scholar
Tremblay, P. E., Bergeron, P., & Gianninas, A. 2011, ApJ, 730, 128CrossRefGoogle Scholar
Winget, D. E., Hansen, C. J., Liebert, J., et al. 1987, ApJ, 315, L77CrossRefGoogle Scholar