Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T05:52:03.390Z Has data issue: false hasContentIssue false

The Supernova – ISM/Star-formation interplay

Published online by Cambridge University Press:  29 January 2014

Gerhard Hensler*
Affiliation:
Department of Astrophysics, University of Vienna, Tuerkenschanzstr. 17, 1180 Vienna, Austria email: gerhard.hensler@univie.ac.at
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the complexity of investigations aiming at understanding the interchange between supernova explosions with the star-forming molecular clouds. Commencing from analytical studies the paper advances to numerical models of supernova feedback from superbubble scales to galaxy structure. We also discuss parametrizations of star-formation and supernova-energy transfer efficiencies. Since evolutionary models from the interstellar medium to galaxies are numerous and are applying multiple recipes of these parameters, only a representative selection of studies can be discussed here.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Böhringer, H. & Hensler, G. 1989, A&A, 215, 147Google Scholar
Chevalier, R. A. 1974, ApJ, 188, 501Google Scholar
Chevalier, R. A. 1977, ARA&A, 15, 175Google Scholar
Cioffi, D. F. & Shull, J. M. 1991, ApJ, 367, 96Google Scholar
Dalla Vecchia, C. & Schaye, J. 2008, MNRAS, 387, 1431Google Scholar
de Avillez, M. A. & Breitschwerdt, D. 2004, A&A, 425, 899Google Scholar
Efstathiou, G. 2000, MNRAS, 317, 697Google Scholar
Ehlerova, S., Palous, J., Theis, C., & Hensler, G. 1997, A&A, 328, 111Google Scholar
Elmegreen, B. G. 2002, ApJ, 577, 206Google Scholar
Elmegreen, B. G. & Efremov, Y. N. 1997, ApJ, 480, 235Google Scholar
Fukuda, N. & Hanawa, T. 2000, ApJ, 533, 911Google Scholar
Gorjian, V., Werner, M. W., Mould, J. R., et al. 2004, ApJS, 154, 275Google Scholar
Gudell, A. 2002, diploma thesis, University of KielGoogle Scholar
Habe, A., Ikeuchi, S., & Tanaka, Y. D. 1981, PASJ, 33, 23Google Scholar
Hensler, G. 2007, in: Ensellem, E.et al. (eds.), Chemodynamics: from first stars to local galaxies Proc. CRAL-Conference Series I, EAS Publ. Ser. No. 7, p. 113Google Scholar
Hensler, G. 2009, in: Andersen, J., Bland-Hawthorn, J., & Nordstroem, B. (eds.), The Galaxy Disk in Cosmological Context, Proc. IAU Symp. No. 254, p. 269Google Scholar
Hensler, G. 2011, in: Alves, J., Elmegreen, B., & Trimble, V. (eds.), Computational Star Formation, Proc. IAU Symp. No. 270, p. 309Google Scholar
Hensler, G. & Recchi, S. 2010, in: Cunha, K., Spite, M. & Barbuy, B. (eds.), Chemical Abundances in the Universe: Connecting First Stars to Planets, Proc. IAU Symp. No. 265, p. 325Google Scholar
Hensler, G., Dickow, R., Junkes, N., & Gallagher, J. S. 1998, ApJ, 502, L17Google Scholar
Ikeuchi, S. & Tomita, H. 1983, PASJ, 35, 56Google Scholar
Ikeuchi, S., Habe, A., & Tanaka, Y. D. 1984, MNRAS, 207, 909Google Scholar
Junkes, N., Fürst, E., & Reich, W. 1992, A&A, 261, 289Google Scholar
Kennicutt, R. J. 1998, ApJ, 498, 541Google Scholar
Köppen, J., Theis, C., & Hensler, G. 1995, A&A, 296, 99Google Scholar
Köppen, J., Theis, C., & Hensler, G. 1998, A&A, 328, 121Google Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250Google Scholar
Lee, H.-T. & Chen, W. P. 2009, ApJ, 694, 1423Google Scholar
Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782Google Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, Rev. Mod. Phys., 76, 125Google Scholar
Martin, C. L., Kobulnicki, H. A., & Heckman, T. M. 2002, ApJ, 574, 663Google Scholar
Matteucci, F. & Recchi, S. 2001, ApJ, 558, 351Google Scholar
McKee, C. F. & Ostriker, J. P. 1977, ApJ, 218, 148Google Scholar
Melioli, C. & de Gouveia Dal Pino, E. M. 2004, A&A, 424, 817Google Scholar
Moreno, E., Alfaro, E. J., & Franco, J. 1999, ApJ, 522, 276Google Scholar
Oey, M. S., Watson, A. M., Kern, K., & Walth, G. L. 2005, AJ, 129, 393Google Scholar
Orlando, S., Peres, G., Reale, F., et al. 2005, A&A, 444, 505Google Scholar
Recchi, S. & Hensler, G. 2006a, A&A, 445, L39Google Scholar
Recchi, S. & Hensler, G. 2006b, Rev. Mod. Astronomy, 18, 164Google Scholar
Recchi, S. & Hensler, G. 2007, A&A, 476, 841Google Scholar
Recchi, S. & Hensler, G. 2013, A&A, 551, A41Google Scholar
Recchi, S., Hensler, G., Angeretti, L., & Matteucci, F. 2006, A&A, 445, 875Google Scholar
Recchi, S., Matteucci, F., D'Ercole, A., & Tosi, M. 2002, A&A, 384, 799Google Scholar
Rosen, A. & Bregman, J. N. 1995, ApJ, 440, 634Google Scholar
Samland, M., Hensler, G., & Theis, C. 1997, ApJ, 476, 544Google Scholar
Schruba, A., Leroy, A. K., Walter, F., et al. 2011, AJ, 142, 37Google Scholar
Slyz, A. D., Devriendt, J. E. G., Bryan, G., & Silk, J. 2005, MNRAS, 356, 737Google Scholar
Silk, J. 2003, MNRAS, 343, 249Google Scholar
Spitzer, L. 1956, ApJ, 124, 20Google Scholar
Spitzer, L. 1990, ARA&A, 28, 71Google Scholar
Stinson, G. S., Seth, A., Katz, N., et al. 2006, MNRAS, 373, 1074Google Scholar
Stinson, G. S., Brook, C., Maccio, A. V., et al. 2013, MNRAS, 428, 129Google Scholar
Strickland, D. K., Heckman, T. M., Colbert, E. J. M., et al. 2004, ApJ, 606, 829Google Scholar
Tasker, E. J. & Bryan, G. L. 2006, ApJ, 641, 878Google Scholar
Tasker, E. J. & Bryan, G. L. 2008, ApJ, 673, 810Google Scholar
Thornton, K., Gaudlitz, M., Janka, H.-Th., & Steinmetz, M. 1998, ApJ, 500, 95CrossRefGoogle Scholar
Weidemann, V. & Koester, D. 1983, A&A, 121, 77Google Scholar
Wilson, B. A., Dame, T. M., Masheder, M. R. W., & Thaddeus, P. 2005, A&A, 430, 523Google Scholar
Woltjer, L. 1972, ARA&A, 10, 129Google Scholar
Wünsch, R., Dale, J. E., Palous, J., & Whitworth, A. P. 2010, MNRAS, 407, 1963Google Scholar
Xu, J.-L., Wang, J.-J., & Miller, M. 2011, ApJ, 727, 81Google Scholar