Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T10:06:24.607Z Has data issue: false hasContentIssue false

Sun and planets from a climate point of view

Published online by Cambridge University Press:  01 September 2008

J. Beer
Affiliation:
Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
J. A. Abreu
Affiliation:
Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
F. Steinhilber
Affiliation:
Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Sun plays a dominant role as the gravity centre and the energy source of a planetary system. A simple estimate shows that it is mainly the distance from the Sun that determines the climate of a planet. The solar electromagnetic radiation received by a planet is very unevenly distributed on the dayside of the planet. The climate tries to equilibrate the system by transporting energy through the atmosphere and the oceans provided they exist. These quasi steady state conditions are continuously disturbed by a variety of processes and effects. Potential causes of disturbance on the Sun are the energy generation in the core, the energy transport trough the convection zone, and the energy emission from the photosphere. Well understood are the effects of the orbital parameters responsible for the total amount of solar power received by a planet and its relative distribution on the planet's surface. On a planet, many factors determine how much of the arriving energy enters the climate system and how it is distributed and ultimately reemitted back into space. On Earth, there is growing evidence that in the past solar variability played a significant role in climate change.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Beer, J., Vonmoos, M., & Muscheler, R.: 2006, Solar Variability Over the Past Several Millennia. Space Science Reviews 125, 7979. doi:10.1007/s11214-006-9047-4.Google Scholar
Berger, A. L.: 1978, Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. Journal of Atmospheric Sciences 35, 23672367.Google Scholar
Bryden, H. L. & Imawaki, S.: 2001, Ocean heat transport. In: Siedler, G., Church, J., Gould, J. (eds.) Ocean Circulation and Climate, Academic Press, St. Louis, 474474.Google Scholar
Clark, P. U., Marshall, S. J., Clarke, G. K. C., Hostetler, S. W., Licciardi, J. M., & Teller, J. T.: 2001, Freshwater Forcing of Abrupt Climate Change During the Last Glaciation. Science 293, 287287. doi:10.1126/science.1062517.Google Scholar
Dansgaard, W., Johnson, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidbjerg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., & Bond, G.: 1993, Evidence for general instability of past climnate from a 250-kyr ice-core record. Nature 364, 220220. doi:10.1038/364218a0.CrossRefGoogle Scholar
Denton, G. H. & Karlén, W.: 1973, Holocene climatic variations - their pattern and possible cause. Quaternary Research 3, 205205.Google Scholar
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., & Revenaugh, J.: 2005, A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 8686. doi:10.1016/j.epsl.2005.01.036.CrossRefGoogle Scholar
Fröhlich, C.: 2006, Solar Irradiance Variability Since 1978. Revision of the PMOD Composite during Solar Cycle 21. Space Science Reviews 125, 6565. doi:10.1007/s11214-006-9046-5.Google Scholar
Fröphlich, C.: 2008, Total Solar Irradiance Variability: What have we learned about its variability from the record of the last three solar cycles? Proc. CAWSES Symp., October, 23-27 2007, Kyoto, Japan.Google Scholar
Fröhlich, C. & Lean, J.: 2004, Solar radiative output and its variability: evidence and mechanisms. Astronomy and Astrophysicsr 12, 320320. doi:10.1007/s00159-004-0024-1.Google Scholar
Holzhauser, H., Magny, M., & Zumbühl, H. J.: 2005, Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15, 801801.CrossRefGoogle Scholar
Hormes, A., Beer, J., & Schluchter, C.: 2006, A geochronological approach to understanding the role of solar activity on Holocene glacier length variability in the Swiss Alps Geografiska Annaler Series A - Physical Geography, 88, 294294.Google Scholar
Joerin, U. E., Stocker, T. F., & Schluchter, C.: 2006, Multicentury glacier fluctuations in the Swiss Alps during the Holocene Holocene, 16, 704704.CrossRefGoogle Scholar
Kernthaler, S. C., Toumi, R., & Haigh, J. D.: 1999, Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophysical Research Letters 26, 866866. doi:10.1029/1999GL900121.Google Scholar
Krivova, N. A., Solanki, S. K., Fligge, M., & Unruh, Y. C.: 2003, Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? Astronomy and Astrophysics 399, 44. doi:10.1051/0004-6361:20030029.CrossRefGoogle Scholar
Kuhn, J. R.: 1988, Helioseismological splitting measurements and the nonspherical solar temperature structure. Astrophysical Journal Letters 331, 134134. doi:10.1086/185251.CrossRefGoogle Scholar
Kuhn, J. R. & Libbrecht, K. G.: 1991, Nonfacular solar luminosity variations. Astrophysical Journal Letters 381, 3737. doi:10.1086/186190.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M. & Levrard, B.: 2004, A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 285285. doi:10.1051/0004-6361:20041335.Google Scholar
Lockwood, M., & Fröhlich, C.: 2008, Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. II. Different reconstructions of the total solar irradiance variation and dependence on response time scale Proceedings of the Royal Society, 464, 13851385.Google Scholar
Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, U. J. M. Siegenthaler, Raynaud, D., Jouzel, J., Fischer, H., Kawamura, & T. F. K. Stocker: 2008, High-resolution carbon dioxide concentration record 650,000-800,000 years before present Nature, 453, 382382.Google Scholar
Marsh, N. & Svensmark, H.: 2003, Solar Influence on Earth's Climate. Space Science Reviews 107, 325325. doi:10.1023/A:1025573117134.Google Scholar
Milankovic, M.: 1930, Mathematische Klimalehre und atsronomische Theorie der Klimaschwankungen. In: Köppen, W., & Geiger, R. (eds.) Handbuch der Klimatologie, Gebrüder Bornträger, Berlin, 176176.Google Scholar
Newkirk, G. Jr.: 1983, Variations in solar luminosity. Annual review of astronomy and astrophysics 21, 467467. doi:10.1146/annurev.aa.21.090183.002241.Google Scholar
Sofia, S. & Li, L. H.: 2005, Mechanisms for global solar variability. Memorie della Societa Astronomica Italiana 76, 768.Google Scholar
Solanki, S. K. & Fligge, M.: 2002, Solar irradiance variations and climate Journal of Atmospheric and Solar-Terrestrial Physics, 64, 685685.Google Scholar
Steinhilber, F., Abreu, J. A., & Beer, J.: 2008, Solar modulation during the Holocene Astrophysics and Space Sciences Transactions, 4, 66.Google Scholar
Stuiver, M. & Braziunas, T. F.: 1993, Sun, Ocean, Climate and Atmospheric 14CO2, an evaluation of causal and spectral relationships Holocene, 3, 305305.Google Scholar
Svensmark, H.: 1998, Influence of Cosmic Rays on Earth's Climate Physical Review Letters, 81, 50305030.CrossRefGoogle Scholar
The Picard Team, Dewitte, S. & Schmutz, W.: 2006, Simultaneous measurement of the total solar irradiance and solar diameter by the PICARD mission. Advances in Space Research 38, 18061806. doi:10.1016/j.asr.2006.04.034.Google Scholar
Thuillier, G., Sofia, S., & Haberreiter, M.: 2005, Past, present and future measurements of the solar diameter. Advances in Space Research 35, 340340. doi:10.1016/j.asr.2005.04.021.CrossRefGoogle Scholar
Tinsley, B. A.: 2000, Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere Space Science Reviews, 94, 258258.CrossRefGoogle Scholar
Unruh, Y. C., Solanki, S. K., & Fligge, M.: 1999, The spectral dependence of facular contrast and solar irradiance variations Astronomy and Astrophysics, 345, 642642.Google Scholar
Usoskin, I. G., Marsh, N., Kovaltsov, G. A., Mursula, K., & Gladysheva, O. G.: 2004, Latitudinal dependence of low cloud amount on cosmic ray induced ionization. Geophysical Research Letters 31, 16109. doi:10.1029/2004GL019507.CrossRefGoogle Scholar
Vonmoos, M., Beer, J., & Muscheler, R.: 2006, Large variations in Holocene solar activity: Constraints from 10Be in the Greenland Ice Core Project ice core. Journal of Geophysical Research (Space Physics) 111 (10), 10105. doi:10.1029/2005JA011500.Google Scholar
Wagner, G., Livingstone, D. M., Masarik, J., Muscheler, R., & Beer, J.: 2001, Some results relevant to the discussion of a possible link between cosmic rays and the Earth's climate. Journal of Geophysical Research 106, 33883388. doi:10.1029/2000JD900589.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., & Widmann, M.: 2008, Mid- to Late Holocene climate change: an overview Quaternary Science Reviews, 27, 18281828.CrossRefGoogle Scholar
Wenzler, T., Solanki, S. K., Krivova, N. A., & Fröhlich, C.: 2006, Reconstruction of solar irradiance variations in cycles 21-23 based on surface magnetic fields. Astronomy and Astrophysics 460, 595595. doi:10.1051/0004-6361:20065752.CrossRefGoogle Scholar
Willson, R. C., & Mordvinov, A. V.: 2003, Secular total solar irradiance trend during solar cycles 21–23. Geophysical Research Letters 30 (5), 11.CrossRefGoogle Scholar