Published online by Cambridge University Press: 02 May 2006
Nulling interferometry is one of the promising techniques for the study of extra terrestrial planets. This technique will be applied in the future space missions Darwin and TPF-I, and from the ground with GENIE. The nulling interferometry techniques require high symmetry of the interfering beams, to obtain the required contrast (typically $10^6$ to detect terrestrial exo-planets in the thermal infrared). In this paper we consider the polarization symmetry issue, such as polarization rotation and polarization phase shifts occurring on slightly misaligned optics. We study the consequences of these symmetry requirements on a nulling interferometer design. We find the relation between the misalignment tolerances and the achievable nulling, and we show that this tolerance is highly dependent on the interferometer configuration (the way beams turn right, left, up or down in the interferometer arms). It is typically of the order of the arcminute (not the arcsecond) for a $10^6$ contrast. We present a analytical and numerical analyses.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.