Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T01:32:20.405Z Has data issue: false hasContentIssue false

Stellar-mass black holes in star clusters: implications for gravitational-wave radiation

Published online by Cambridge University Press:  18 January 2010

Sambaran Banerjee
Affiliation:
Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121, Bonn, Germany email: sambaran@astro.uni-bonn.de, holger@astro.uni-bonn.de, pavel@astro.uni-bonn.de Alexander von Humboldt fellow
Holger Baumgardt
Affiliation:
Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121, Bonn, Germany email: sambaran@astro.uni-bonn.de, holger@astro.uni-bonn.de, pavel@astro.uni-bonn.de
Pavel Kroupa
Affiliation:
Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121, Bonn, Germany email: sambaran@astro.uni-bonn.de, holger@astro.uni-bonn.de, pavel@astro.uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the dynamics of stellar-mass black holes (BHs) in star clusters, with particular attention to the formation of BH–BH binaries, which are interesting as sources of gravitational waves (GWs). We examine the properties of these BH–BH binaries through direct N-body simulations of Plummer clusters of N ≤ 105 low-mass stars with an initial population of stellar-mass BHs, using the nbody6 code. We find that the stellar-mass BHs segregate rapidly into the cluster core and form a dense subcluster of BHs in which BH–BH binaries form through three-body encounters. While most BH binaries are ejected from the cluster by recoils due to superelastic encounters with the single BHs, we find that for clusters with N ≳ 5 × 104, typically a few of them harden sufficiently so that they can merge via GW emission within the cluster. Also, for each of such clusters there are a few escaping BH binaries that merge within a Hubble time, with most merger times being within a few Gyr. These results imply that the intermediate-age massive clusters constitute the most important class of star cluster candidates that can produce dynamical BH–BH mergers at the present epoch. The BH–BH merger rates obtained from our computations imply a significant detection rate (~30 yr−1) for the proposed Advanced LIGO GW detector.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Banerjee, S., Baumgardt, H., & Kroupa, P. 2009, MNRAS, in press (arXiv:0910.3954)Google Scholar
Belczynski, K., Taam, R. E., Kalogera, V., Rasio, F. A., & Bulik, T. 2007, ApJ, 662, 504CrossRefGoogle Scholar
Casares, J. 2007, in: Karas, V. & Matt, G.. (eds.), Black Holes from Stars to Galaxies: Across the Range of Masses, IAU Symp, 238, p. 3Google Scholar
Gieles, M., Larsen, S. S., Scheepmaker, R. A., Bastian, N., Haas, M. R., & Lamers, H. J. G. L. M. 2006, A&A, 446, L9Google Scholar
Heggie, D. C. 1975, MNRAS, 173, 729CrossRefGoogle Scholar
Heggie, D. C. & Hut, P. 2003, The Gravitational Millon-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Larsen, S. S. 2009, A&A, 494, 539Google Scholar
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2007, MNRAS, 379, L40CrossRefGoogle Scholar
Merritt, D., Piatek, S., Portegies Zwart, S., & Hemsendorf, M. 2004, ApJ, 608, L25CrossRefGoogle Scholar
Peters, P. C. 1964, Phys. Rev. B, 136, 1224CrossRefGoogle Scholar
Portegies Zwart, S. F. & McMillan, S. L. W., 2000, ApJ (Letters), 528, L17CrossRefGoogle Scholar
Weidner, C., Kroupa, P., & Larsen, S. S. 2004, MNRAS, 350, 1503CrossRefGoogle Scholar