Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T05:55:19.678Z Has data issue: false hasContentIssue false

Stellar activity and magnetic shielding

Published online by Cambridge University Press:  26 February 2010

J.-M. Grießmeier
Affiliation:
ASTRON, Postbus 2, 7990 AA, Dwingeloo, The Netherlands email: griessmeier@astron.nl
M. Khodachenko
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria
H. Lammer
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria
J. L. Grenfell
Affiliation:
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin (TUB), Hardenbergstr. 36, 10623 Berlin, Germany
A. Stadelmann
Affiliation:
Technical University of Braunschweig, Mendelssohnstraße 3, 38106 Braunschweig, Germany
U. Motschmann
Affiliation:
Technical University of Braunschweig, Mendelssohnstraße 3, 38106 Braunschweig, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Beaulieu, J.-P., Bennett, D. P., Fouqué, P., et al. 2006, Nature, 439, 437CrossRefGoogle Scholar
Belisheva, N. K., Kuzhevskii, B. M., Vashenyuk, E. V., & Zhirov, V. K. 2005, Doklady Biochemistry and Biophysics, 402, 254CrossRefGoogle Scholar
Bouchy, F., Mayor, M. C., et al. 2009, Astron. Astrophys., 496, 527CrossRefGoogle Scholar
Buccino, A. P., Lemarchand, G. A., & Mauas, P. J. D. 2007, Icarus, 192, 582Google Scholar
Christensen, U. R. & Aubert, J. 2006, Geophys. J. Int., 166, 97CrossRefGoogle Scholar
Crutzen, P. J. 1970, Q. J. R. Meteorol. Soc., 96, 320Google Scholar
Cuntz, M., Guinan, E. F., & Kurucz, R. L. 2010, this proceedings, p. 419Google Scholar
Forveille, T., Bonfils, X., Delfosse, X., et al. 2009, Astron. Astrophys., 493, 645CrossRefGoogle Scholar
Fridlund, C. V. M. 2004, Adv. Space Res., 34, 613CrossRefGoogle Scholar
Grenfell, J. L., Grießmeier, J.-M., Patzer, B., et al. 2007, Astrobiology, 7, 208Google Scholar
Grenfell, J. L., Grießmeier, J.-M., Patzer, B., et al. 2010, to be submittedGoogle Scholar
Grießmeier, J.-M., Preusse, S., Khodachenko, M., et al. 2007, Planet. Space Sci., 55, 618Google Scholar
Grießmeier, J.-M., Stadelmann, A., Grenfell, J. L., Lammer, H., & Motschmann, U. 2009, Icarus, 199, 526Google Scholar
Grießmeier, J.-M., Stadelmann, A., Motschmann, U., et al. 2005, Astrobiology, 5, 587Google Scholar
Grießmeier, J.-M., Stadelmann, A., Penz, T., et al. 2004, Astron. Astrophys., 425, 753Google Scholar
Houdebine, E. R., Foing, B. H., & Rodonò, M. 1990, Astron. Astrophys., 238, 249Google Scholar
Howard, A. W., Johnson, J. A., Marcy, G. W., et al. 2009, Astrophys. J., 696, 75CrossRefGoogle Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108CrossRefGoogle Scholar
Khodachenko, M. L., Ribas, I., Lammer, H., et al. 2007, Astrobiology, 7, 167Google Scholar
Lammer, H., Bredehöft, J. H., Coustenis, A., et al. 2009, Astron. Astrophys. Rev., 17, 181Google Scholar
Lammer, H., Lichtenegger, H. I. M., Kulikov, Y. N., et al. 2007, Astrobiology, 7, 185CrossRefGoogle Scholar
Lammer, H., Selsis, F., Ribas, I., et al. 2003, Astrophys. J., 598, L121Google Scholar
Lovelock, J. E. 1965, Nature, 207, 568CrossRefGoogle Scholar
Lovis, C., Mayor, M., Pepe, F., et al. 2006, Nature, 441, 305Google Scholar
Mann, G., Jansen, F., MacDowall, R. J., Kaiser, M. L., & Stone, R. G. 1999, Astron. Astrophys., 348, 614Google Scholar
Mayor, M., Udry, S., Lovis, C., et al. 2009, Astron. Astrophys., 493, 639CrossRefGoogle Scholar
Newkirk, G. Jr., 1980, in The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites, ed. Pepin, R. O., Eddy, J. A., & Merrill, R. B., 293–320Google Scholar
Olson, P. & Christensen, U. R. 2006, Earth Planet. Sci. Lett., 250, 561Google Scholar
O'Neill, C., Jellinek, A. M., & Lenardic, A. 2007, Earth Planet. Sci. Lett., 261, 20Google Scholar
Parker, E. N. 1958, Astrophys. J., 128, 664Google Scholar
Prölss, G. W. 2004, Physics of the Earth's Space Environment (Berlin: Springer-Verlag)Google Scholar
Reeves, G. D., Cayton, T. E., Gary, S. P., & Belian, R. D. 1992, J. Geophys. Res., 97, 6219Google Scholar
Ribas, I., Font-Ribera, A., & Beaulieu, J.-P. 2008, Astrophys. J., 677, L59CrossRefGoogle Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, Astrophys. J., 622, 680CrossRefGoogle Scholar
Rivera, E. J., Lissauer, J. J., Butler, R. P., et al. 2005, Astrophys. J., 634, 625Google Scholar
Sagan, C., Thomson, W. R., Carlson, R., Gurnett, D., & Hord, C. 1993, Nature, 365, 715Google Scholar
Scalo, J., Kaltenegger, L., Segura, A., et al. 2007, Astrobiology, 7, 85Google Scholar
Schneider, J., Riaud, P., Tinetti, G., et al. 2006, in SF2A-2006: Semaine de l'Astrophysique Francaise, ed. Barret, D., Casoli, F., Contini, T., Lagache, G., Levacelier, A., & Pagani, L., 429–432Google Scholar
Seo, E. S., McDonald, F. B., Lal, N., & Webber, W. R. 1994, Astrophys. J., 432, 656Google Scholar
Shea, M. A. & Smart, D. F. 2000, Space Sci. Rev., 93, 187Google Scholar
Smith, D. S., Scalo, J., & Wheeler, J. C. 2004, Icarus, 171, 229Google Scholar
Stadelmann, A. 2005, PhD thesis, Technische Universität Braunschweig, ISBN 3-936586-42-X, Copernicus-GmbH Katlenburg-Lindau, URL: http://www.digibib.tu-bs.de/?docid=00000002Google Scholar
Stevenson, D. J. 1983, Rep. Prog. Phys., 46, 555Google Scholar
Stevenson, D. J. 2003, Earth Planet. Sci. Lett., 208, 1CrossRefGoogle Scholar
Stevenson, D. J., Spohn, T., & Schubert, G. 1983, Icarus, 54, 466Google Scholar
Tarter, J. C., Backus, P. R., Mancinelli, R. L., et al. 2007, Astrobiology, 7, 30Google Scholar
Udry, S., Bonfils, X., Delfosse, X., et al. 2007, Astron. Astrophys., 469, L43Google Scholar
Valencia, D., O'Connell, R. J., & Sasselov, D. D. 2007, Astrophys. J., 670, L45CrossRefGoogle Scholar
Voigt, G.-H. 1981, Planet. Space Sci., 29, 1Google Scholar
Voigt, G.-H. 1995, in Handbook of atmospheric electrodynamics, ed. Volland, H., Vol. II (Boca Raton: CRC Press), 333388Google Scholar
Wood, B. E. 2004, Living Rev. Solar Phys., 1, 2, URL: http://www.livingreviews.org/lrsp-2004-2, accessed on 23 February 2007Google Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., & Linsky, J. L. 2002, Astrophys. J., 574, 412Google Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, Astrophys. J., 628, L143CrossRefGoogle Scholar