Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T01:42:20.925Z Has data issue: false hasContentIssue false

The state of molecular gas in the Small Magellanic Cloud

Published online by Cambridge University Press:  01 July 2008

Adam K. Leroy
Affiliation:
Max Planck Institute for Astronomy, Heidelberg, Germany
Alberto D. Bolatto
Affiliation:
Department of Astronomy and Laboratory for Millimeter-wave Astronomy, University of Maryland, USA
Erik Rosolowsky
Affiliation:
Department of Mathematics, Statistics, and Physics, University British Columbia at Okanagan, Canada
Snežana Stanimirović
Affiliation:
Department of Astronomy, University of Wisconsin, USA
Norikazu Mizuno
Affiliation:
Department of Astrophysics, Nagoya University, Japan
Caroline Bot
Affiliation:
Observatoire Astronomique de Strasbourg, France
Frank Israel
Affiliation:
Sterrewacht Leiden, The Netherlands
Fabian Walter
Affiliation:
Max Planck Institute for Astronomy, Heidelberg, Germany
Leo Blitz
Affiliation:
Department of Astronomy and Radio Astronomy Laboratory, U.C. Berkeley, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compare the resolved properties of giant molecular clouds (GMCs) in the Small Magellanic Cloud (SMC) and other low mass galaxies to those in more massive spirals. When measured using CO line emission, differences among the various populations of GMCs are fairly small. We contrast this result with the view afforded by dust emission in the Small Magellanic Cloud. Comparing temperature-corrected dust opacity to the distribution of H i suggests extended envelopes of CO-free H2, implying that CO traces only the highest density H2 in the SMC. Including this CO-free H2, the gas depletion time, H2-to-H i ratio, and H2-to-stellar mass/light ratio in the SMC are all typical of those found in more massive irregular galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Blitz, L. 1993, in Protostars and Planets III, p. 125Google Scholar
Blitz, L., Fukui, Y., Kawamura, A., Leroy, A., Mizuno, N., & Rosolowsky, E. 2007, in Reipurth, B., Jewitt, D., & Keil, K. (eds.), Protostars and Planets V (Tucson: University of Arizona Press), p. 81Google Scholar
Bolatto, A. D., Jackson, J. M., Israel, F. P., Zhang, X., & Kim, S. 2000, ApJ, 545, 234CrossRefGoogle Scholar
Bolatto, A. D., Simon, J. D., Leroy, A., & Blitz, L. 2002, ApJ, 565, 238CrossRefGoogle Scholar
Bolatto, A. D., Leroy, A., Israel, F. P., & Jackson, J. M. 2003, ApJ, 595, 167CrossRefGoogle Scholar
Bolatto, A. D., Simon, J. D., Stanimirović, S., et al. 2007, ApJ, 655, 12CrossRefGoogle Scholar
Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., & Blitz, L. 2008, ApJ, 686, 948CrossRefGoogle Scholar
Bot, C., Boulanger, F., Rubio, M., & Rantakyro, F. 2007, A&A, 471, 103Google Scholar
Dickey, J. M., Mebold, U., Stanimirović, S., & Staveley-Smith, L. 2000, ApJ, 536, 756CrossRefGoogle Scholar
Heyer, M. H. & Brunt, C. M. 2004, ApJ, 615, L45CrossRefGoogle Scholar
Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2008, ApJ submittedGoogle Scholar
Israel, F. P. 1997, A&A, 328, 471Google Scholar
Jackson, J. M., Rathborne, J. M., Shah, R. Y., et al. 2006, ApJS, 163, 145CrossRefGoogle Scholar
Johnstone, D., Di Francesco, J., & Kirk, H. 2004, ApJ, 611, L45CrossRefGoogle Scholar
Kennicutt, R. C. Jr., 1998, ApJ, 498, 541CrossRefGoogle Scholar
Larson, R. B. 1981, MNRAS, 194, 809CrossRefGoogle Scholar
Lee, H., Skillman, E. D., Cannon, J. M., Jackson, D. C., Gehrz, R. D., Polomski, E. F., & Woodward, C. E. 2006, ApJ, 647, 970CrossRefGoogle Scholar
Leroy, A., Bolatto, A., Walter, F., & Blitz, L. 2006, ApJ, 643, 825CrossRefGoogle Scholar
Leroy, A., Bolatto, A., Stanimirović, S., Mizuno, N., Israel, F., & Bot, C. 2007a, ApJ, 658, 1027CrossRefGoogle Scholar
Leroy, A., Cannon, J., Walter, F., Bolatto, A., & Weiss, A. 2007b, ApJ, 663, 990CrossRefGoogle Scholar
Maloney, P. & Black, J. H. 1988, ApJ, 325, 389CrossRefGoogle Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARAA, 45, 565CrossRefGoogle Scholar
Mizuno, N., Rubio, M., Mizuno, A., Yamaguchi, R., Onishi, T., & Fukui, Y. 2001, PASJ, 53, L45CrossRefGoogle Scholar
Simon, J. D., Bolatto, A. D., Leroy, A., & Blitz, L. 2003, ApJ, 596, 957CrossRefGoogle Scholar
Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730CrossRefGoogle Scholar
Stanimirović, S., Staveley-Smith, L., & Jones, P. A. 2004, ApJ, 604, 176CrossRefGoogle Scholar
Rosolowsky, E., Engargiola, G., Plambeck, R., & Blitz, L. 2003, ApJ, 599, 258CrossRefGoogle Scholar
Rosolowsky, E. & Leroy, A. 2006, PASP, 118, 590CrossRefGoogle Scholar
Rosolowsky, E. 2007, ApJ, 654, 240CrossRefGoogle Scholar
Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., & Goodman, A. A. 2008, ApJ, 679, 1338CrossRefGoogle Scholar
Rubio, M., Lequeux, J., Boulanger, F. et al. 1993a, A&A, 271, 1Google Scholar
Rubio, M., Lequeux, J., & Boulanger, F. 1993b, A&A, 271, 9Google Scholar
Rubio, M., Boulanger, F., Rantakyro, F., & Contursi, A. 2004, A&A, 425, L1Google Scholar
Taylor, C. L., Kobulnicky, H. A., & Skillman, E. D. 1998, AJ, 116, 2746CrossRefGoogle Scholar
Taylor, C. L., Hüttemeister, S., Klein, U., & Greve, A. 1999, A&A, 349, 424Google Scholar
Walter, F., Taylor, C. L., Hüttemeister, S., Scoville, N., & McIntyre, V. 2001, AJ, 121, 727CrossRefGoogle Scholar
Walter, F., Weiss, A., Martin, C., & Scoville, N. 2002, AJ, 123, 225CrossRefGoogle Scholar
Walter, F. 2003, in Star Formation at High Angular Resolution, IAU Symposium 221, p. 176CrossRefGoogle Scholar
Wilke, K., Klaas, U., Lemke, D., Mattila, K., Stickel, M., & Haas, M. 2004, A&A, 414, 69Google Scholar
Young, J. S. & Scoville, N. Z. 1991, ARAA, 29, 581CrossRefGoogle Scholar
Young, J. S., Allen, L., Kenney, J. D. P., Lesser, A., & Rownd, B. 1996, AJ, 112, 1903CrossRefGoogle Scholar
Young, L. M. 2001, AJ, 122, 1747CrossRefGoogle Scholar