Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T23:40:19.975Z Has data issue: false hasContentIssue false

Star formation in galaxies: the role of spiral arms

Published online by Cambridge University Press:  06 January 2014

Clare L. Dobbs*
Affiliation:
School of Physics & Astronomy, University of Exeter, Stocker Road, Exeter, UK, EX4 4QL email: dobbs@astro.ex.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Studying star formation in spiral arms tells us not only about the evolution of star formation, and molecular clouds, but can also tell us about the nature of spiral structure in galaxies. I will address both these topics using the results of recent simulations and observations. Galactic scale simulations are beginning to examine in detail the evolution of Giant Molecular Clouds (GMC) as they form in spiral arms, and then disperse by stellar feedback or shear. The overall timescale for this process appears comparable to the crossing time of the GMCs, a few Myrs for 105 M clouds, 20 Myr or so for more massive GMCs. Both simulations and observations show that the massive clouds are found in the spiral arms, likely as a result of cloud-cloud collisions. Simulations including stars should also tell us about the stellar age distribution in GMCs, and across spiral arms. More generally, recent work on spiral galaxies suggests that the dynamics of gas flows in spiral arms are different in longlived and transient spiral arms, resulting in different age patterns in the stars. Such results could be used to help establish the main driver of spiral structure in the Milky Way (Toomre instabilities, the bar, or nearby companion galaxies) in conjunction with future surveys.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Baba, J., Saitoh, T. R., & Wada, K. 2013, ApJ, 763, 46Google Scholar
Balbus, S. A. 1988, ApJ, 324, 60Google Scholar
Bonnell, I. A., Dobbs, C. L., & Smith, R. J. 2013, MNRAS, 430, 1790Google Scholar
Casoli, F., & Combes, F. 1982, A&A, 110, 287Google Scholar
Dobbs, C. L. 2008, MNRAS, 391, 844Google Scholar
Dobbs, C. L., & Pringle, J. E. 2013, MNRAS, 432, 653Google Scholar
Dobbs, C. L., Pringle, J. E., & Burkert, A. 2012, MNRAS, 425, 2157CrossRefGoogle Scholar
Dobbs, C. L., Burkert, A., & Pringle, J. E. 2011, MNRAS, 417, 1318Google Scholar
Dobbs, C. L., & Pringle, J. E. 2010, MNRAS, 409, 396Google Scholar
Dobbs, C. L., & Pringle, J. E. 2009, MNRAS, 396, 1579Google Scholar
Eden, D. J., Moore, T. J. T., Morgan, L. K., Thompson, M. A., & Urquhart, J. S. 2013, MNRAS, 431, 1587CrossRefGoogle Scholar
Elmegreen, B. G. 1979, ApJ, 231, 372Google Scholar
Elmegreen, B. G. 2000, ApJ, 530, 277CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 1983, MNRAS, 203, 31CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 1986, ApJ, 311, 554Google Scholar
Ferreras, I., Cropper, M., Kawata, D., Page, M., & Hoversten, E. A. 2011, MNRAS, 424, 1636Google Scholar
Foyle, K., Rix, H.-W., Walter, F., & Leroy, A. K. 2010, ApJ, 725, 534Google Scholar
Foyle, K., Rix, H.-W., Dobbs, C. L., Leroy, A. K., & Walter, F. 2011, ApJ, 735, 101CrossRefGoogle Scholar
Grand, R. J. J., Kawata, D., & Cropper, M. 2012, MNRAS, 421, 1529Google Scholar
Heitsch, F., Slyz, A. D., Devriendt, J. E. G., Hartmann, L. W. & Burkert, A. 2006, ApJ, 648, 1052CrossRefGoogle Scholar
Hopkins, P. F., Quataert, E., & Murray, N. 2011, ApJ, 764, 36Google Scholar
Roberts, W. W. 1969, ApJ, 158, 123Google Scholar
Sánchez-Gil, M. C., Jones, D. H., Prez, E., Bland-Hawthorn, J., Alfaro, E. J., & O'Byrne, J. 2011, MNRAS, 415, 753Google Scholar
Seigar, M. S. & James, P. A. 2002, MNRAS, 337, 1113CrossRefGoogle Scholar
Tasker, E. J. & Tan, J. C. 2009, ApJ, 700, 358Google Scholar
Van Loo, S., Butler, M. J., & Tan, J. C. 2013, ApJ, 764, 36Google Scholar
Vogel, S. N., Kulkarni, S. R., & Scoville, N. Z. 1988, Nature, 334, 402Google Scholar