Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T16:52:50.751Z Has data issue: false hasContentIssue false

Solar radius variations: new look on the wavelength dependence

Published online by Cambridge University Press:  09 September 2016

Jean-Pierre Rozelot
Affiliation:
Université de la Côte d'Azur, CNRS-OCA, Nice cedex 4, France email: jp.rozelot@orange.fr
Alexander Kosovichev
Affiliation:
New Jersey Institute of Technology, Newark, NJ 07103, USA email: sasha@bbso.njit.edu
Ali Kilcik
Affiliation:
Department of Space Science and Technologies, Akdeniz University, 07058 Antalya, Turkey email: alikilcik@akdeniz.edu.tr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The possibility that the Sun's radius is changing, even at a faint level, has been discussed over a long time. As the solar radius is certainly one of the most important basic pieces of astrophysical information, it is crucial to determine the physical mechanisms that may cause shrinking or expansion of the solar envelope. The wavelength dependence has been poorly inspected up to now. Here we examine recent solar radius determinations from space observations, mainly from Mercury and Venus transits, made by different teams in 2006, 2012 and 2014. Seemingly, the results are not consistent: authors interpreted the discrepancies because of the different methods of analysis used in their work. However, looking at the wavelength dependence, adding other available observations, from X-EUV up to radio, a typical relationship between the radius and the wavelength can be found, reflecting the different heights at which the lines are formed. Possible explanations are discussed. Such results can be interesting for studying solar-stellar connections.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Auwers, A. 1891, Astronomische Nachrichten, 128, 361 Google Scholar
Bachurin, A. F. 1984, Bull.Crimean Astr. Obs., 65, 64 Google Scholar
Benz, A. O. 2009, in Radio Emission of the Quiet Sun (Berlin: Springer)Google Scholar
Caccin, B. & Penza, V. 2003, Mem. S.A.It. Vol. 74, 663 Google Scholar
Delaboudinière, J.-P., Artzner, G. E., Brunaud, J., et al. 1995, Sol. Phys., 162, 291 Google Scholar
Dziembowski, W. A., Goode, P. R., & Schou, J. 2001, ApJ, 553, 897 Google Scholar
Fazel, Z., Rozelot, J. P., Lefebvre, S., Ajabshirizadeh, A., & Pireaux, S. 2008, New Astr., 13, 65 Google Scholar
Goode, P. R. & Dziembowski, W. A., 2003, Jour. of the Korean Astron. Soc. 36 S75S81 Google Scholar
Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L. & Corda, C. 2011 Astrophys. Space Sci., 331, 351 Google Scholar
Kosovichev, A. G., Schou, J., Scherrer, P. H., et al. 1997, Sol. Phys., 170, 43 Google Scholar
Kosovichev, A. K. 2016, in Cartography of the Sun and the Stars, Lecture Notes in Physics, Rozelot, J.P. & Neiner, C., ed., Springer, 914, in pressGoogle Scholar
Lefebvre, S., Kosovichev, A. G., Nghiem, P., Turck-Chièze, S., & Rozelot, J. P. 2006, SOHO 18 Conference, Sheffield, U.K., August 7-11, 2006. “Beyond the Spherical Sun: a new era of helio–and asteroseismology”. ESA-SP, 624, CDROM, 9.1Google Scholar
Lefebvre, S., Kosovichev, A. G., & Rozelot, J. P. 2007, ApL Lett., 658, L135 Google Scholar
Lejeune, A. 1947, Annales Société Scientifique de Bruxelles, Série 1 Vol. LXI, 27Google Scholar
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, Sol. Phys., 275, 17 Google Scholar
Meftah, M., Corbard, T., Irbah, A., et al. 2014, A & A, 569, A60 Google Scholar
Nicholson, P. S. & Parker, E. A. 1973, Obs, 93, 13 Google Scholar
Pierce, A. K. & Slaughter, C. D. 1977, Sol. Phys., 51, 25 Google Scholar
Pipin, V. V. & Kosovichev, A. G. 2011, ApJ, 727 L45 Google Scholar
Reiter, J., Rhodes, E. J. Jr., Kosovichev, A. G., et al. 2015, ApJ, 803, 92 Google Scholar
Rozelot, J. P., Lefebvre, S., & Desnoux, V. 2003, Sol. Phys., 217, 39 Google Scholar
Rozelot, J. P., Kosovichev, A. K. & Lefebvre, S. 2006, Highlights of Astronomy, Vol. 14, von der Hucht, K.A. ed.Google Scholar
Rozelot, J. P. & Damiani, C. 2003, The Euro. Phys. Jour. H, 37, 709 Google Scholar
Rozelot, J. P., Kosovichev, A., & Kilcik, A. 2015, ApJ, 812, 91 Google Scholar
Shapiro, A. E. 1975, Journal of Historical Astronomy, p. 75–80Google Scholar
Scafetta, N. & Willson, R. 2014, Astr. Sp. Sc., 350, 421 Google Scholar
Scherrer, P. H., Shou, J., Bush, R. I., et al. 2012, Sol. Phys., 275, 207 Google Scholar
Selhorst, C. L., Silva, A. V. R., & Costa, J. E. R. 2004, A & A, 420, 1117 Google Scholar
Sigismondi, C., Ayiomamitis, A., Wang, X., et al. 2015, http://de.arxiv.org/ftp/arxiv/papers/1507/1507.03622.pdf Google Scholar
Sofia, S., Girard, T. M., Sofia, U. J., et al. 2013, MNRAS, 436, 2151 Google Scholar
Thuillier, G., Claudel, J., Djafer, D., et al. 2011, Sol. Phys., 268, 125 Google Scholar