Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T00:05:26.972Z Has data issue: false hasContentIssue false

Solar prominences

Published online by Cambridge University Press:  01 September 2008

Brigitte Schmieder
Affiliation:
LESIA, Observatoire de Paris, 5 Place Janssen, Meudon, 92195, France email: brigitte.schmieder@obspm.fr
Guillaume Aulanier
Affiliation:
LESIA, Observatoire de Paris, 5 Place Janssen, Meudon, 92195, France email: brigitte.schmieder@obspm.fr
Tibor Török
Affiliation:
LESIA, Observatoire de Paris, 5 Place Janssen, Meudon, 92195, France email: brigitte.schmieder@obspm.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Solar filaments (or prominences) are magnetic structures in the corona. They can be represented by twisted flux ropes in a bipolar magnetic environment. In such models, the dipped field lines of the flux rope carry the filament material and parasitic polarities in the filament channel are responsible for the existence of the lateral feet of prominences.

Very simple laws do exist for the chirality of filaments, the so-called “filament chirality rules”: commonly dextral/sinistral filaments corresponding to left- (resp. right) hand magnetic twists are in the North/South hemisphere. Combining these rules with 3D weakly twisted flux tube models, the sign of the magnetic helicity in several filaments were identified. These rules were also applied to the 180° disambiguation of the direction of the photospheric transverse magnetic field around filaments using THEMIS vector magnetograph data (López Ariste et al. 2006). Consequently, an unprecedented evidence of horizontal magnetic support in filament feet has been observed, as predicted by former magnetostatic and recent MHD models.

The second part of this review concerns the role of emerging flux in the vicinity of filament channels. It has been suggested that magnetic reconnection between the emerging flux and the pre-existing coronal field can trigger filament eruptions and CMEs. For a particular event, observed with Hinode/XRT, we observe signatures of such a reconnection, but no eruption of the filament. We present a 3D numerical simulation of emerging flux in the vicinity of a flux rope which was performed to reproduce this event and we briefly discuss, based on the simulation results, why the filament did not erupt.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Amari, T., Luciani, J. F., Mikic, Z., & Linker, J. 1999, ApJ, 518, L60CrossRefGoogle Scholar
Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 495CrossRefGoogle Scholar
Aulanier, G. & Démoulin, P. 1998, A&A, 329, 1125Google Scholar
Aulanier, G., Srivastava, N., & Martin, S. F. 2000, ApJ, 543, 447CrossRefGoogle Scholar
Aulanier, G. & Schmieder, B. 2002, A&A, 386, 1106Google Scholar
Aulanier, G., DeVore, C. R., & Antiochos, S. K. 2006, ApJ, 646, 1349CrossRefGoogle Scholar
Bobra, M., van Ballegooijen, A. A., & DeLuca, E. E. 2008, ApJ, 672, 1209CrossRefGoogle Scholar
Casini, R., López Ariste, A., Tomczyk, S., & Lites, B. W. 2003, ApJ, 589, L67CrossRefGoogle Scholar
Chen, P. F. & Shibata, K. 2000, ApJ, 545, 524CrossRefGoogle Scholar
Deng, Y., Schmieder, B., & Engvold, O. 2002, Sol. Phys., 209, 153CrossRefGoogle Scholar
DeVore, C. R., Antiochos, S. K., & Aulanier, G. 2005, ApJ, 629, 1122CrossRefGoogle Scholar
Dudik, J., Aulanier, G., Schmieder, B., Bommier, V., & Roudier, T. 2008, Sol. Phys., 248, 29CrossRefGoogle Scholar
Fan, Y. & Gibson, S. E. 2004, ApJ, 609, 1123CrossRefGoogle Scholar
Feynman, J. & Martin, S. F. 1995, J. Geophys. Res., 100, 3355CrossRefGoogle Scholar
Jing, J., Yurchyshyn, V. B., Yang, G., Xu, Y., & Wang, H. 2004, ApJ, 614, 1054CrossRefGoogle Scholar
Kliem, B. & Török, T. 2006, Phys. Rev. Lett., 96, 255002CrossRefGoogle Scholar
Lin, J. 2004, Solar Physics, 219, 169CrossRefGoogle Scholar
Lin, J. & Forbes, T. G. 2000, J. Geophys. Res., 105, 2375CrossRefGoogle Scholar
Lin, J., Forbes, T. G., & Isenberg, P. A. 2001, J. Geophys. Res., 106, 25053CrossRefGoogle Scholar
Lin, Y. L., Wiik, J. E., & Engvold, O. 2003, Solar Phys., 216, 109CrossRefGoogle Scholar
Lin, Y. L., Wiik, J. E., Engvold, O., et al. , 2005, Solar Phys., 227, 283CrossRefGoogle Scholar
Low, B. C. 2001, J. Geophys. Res., 106, 25141CrossRefGoogle Scholar
López Ariste, A., Aulanier, G., Schmieder, B., & Sainz Dalda, A. 2006, A&A, 456, 725Google Scholar
Lionello, R., Mikic, Z., Linker, J., & Amari, T. 2002, ApJ, 581, 718CrossRefGoogle Scholar
Malherbe, J.-M. 1989, in Dynamics and Structure of Quiescent Solar Prominences, Kluwer Ac. Pub., 115Google Scholar
Magara, T. 2007, PASJ, 59, L51CrossRefGoogle Scholar
Martin, S. F., Bilimoria, N., & Tracadas, P. W. 1994, in Solar Surface Magnetism, Kluwer Ac. Pub., 303CrossRefGoogle Scholar
Martin, S. F. 1998, Sol. Phys., 182, 107CrossRefGoogle Scholar
Martin, S. F., Lin, Y., & Engvlod, O. 2008, Sol. Phys., 250, 31CrossRefGoogle Scholar
Notoya, S. et al. , 2007, ASP Conf. Series, 369, 381Google Scholar
Okamoto, T. J., Tsuneta, S., Lites, B., et al. , 2008, ApJ, 673, L215CrossRefGoogle Scholar
Rust, D. M. 2001, in Encyclopedia of Astronomy and Astrophysics, http://eaa.iop.orgGoogle Scholar
Schmieder, B., Mein, N., Deng, Y., et al. , 2004, Sol. Phys., 223, 119CrossRefGoogle Scholar
Schrijver, C. J., Elmore, C., Kliem, B., Török, T., & Title, A. M. 2008, ApJ, 674, 586CrossRefGoogle Scholar
Titov, V. S. & Démoulin, P. 1999, A&A, 351, 707Google Scholar
Török, T. 2009, in preparationCrossRefGoogle Scholar
Török, T., Kliem, B., & Titov, V. S. 2004, A&A, 406, 1043Google Scholar
Török, T. & Kliem, B. 2007, Astronomische Nachrichten, 328, 743CrossRefGoogle Scholar
Török, T., Schmieder, B., & Aulanier, G. 2009, in preparationGoogle Scholar
van Ballegooijen, A. A. 2004, ApJ, 615, 519CrossRefGoogle Scholar