Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:41:12.776Z Has data issue: false hasContentIssue false

Solar oblateness & asphericities temporal variations: Outstanding some unsolved issues

Published online by Cambridge University Press:  24 September 2020

Jean P. Rozelot
Affiliation:
1Université Côte d'Azur, 77 Chemin des Basses Moulières, 06130 Grasse, France email: jp.rozelot@orange.fr
Alexander G. Kosovichev
Affiliation:
2Center for Computational Heliophysics and Department of Physics, New Jersey Institute of Technology, Newark, NJ07102, USA email: alexander.g.kosovichev@njit.edu
Ali Kilcik
Affiliation:
3Akdeniz University Faculty of Science, Department of Space Science and Technologies, 07058, Antalya, Turkey email: alikilcik@akdeniz.edu.tr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Solar oblateness has been the subject of several studies dating back to the nineteenth century. Despite difficulties, both theoretical and observational, tangible results have been achieved. However, variability of the solar oblateness with time is still poorly known. How the solar shape evolves with the solar cycle has been a challenging problem. Analysis of the helioseismic data, which are the most accurate measure of the solar structure up to now, leads to the determination of asphericity coefficients which have been found to change with time. We show here that by inverting even coefficients of f-mode oscillation frequency splitting to obtain the oblateness magnitude and its temporal dependence can be inferred. It is found that the oblateness variations lag the solar activity cycles by about 3 years. A major change occurred between solar cycles 23 and 24 is that the oblateness was greater in cycle 24 despite the lower solar activity level. Such results may help to better understand the near-subsurface layers as they strongly impacts the internal dynamics of the Sun and may induce instabilities driving the transport of angular momentum.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Allen, C. W. & Cox, A. N. 2000, Allen's Astrophysical Quantities, 4th edition, Springer-Verlag, New York, p.719Google Scholar
Chandrasekhar, S. 1933, Mon. Not. Roy. Astron. Soc., 93, 390CrossRefGoogle Scholar
Clette, F., Cliver, E. W., Lefèvre, L., Svalgaard, L., Vaquero, J. M., & Leibacher, J. W. 2016, Sol. Phys., Vol. 291, 24792486. DOI: 10.1007/s11207-016-1017-8CrossRefGoogle Scholar
Rozelot, J. P. & Damiani, C. 2011, European Journal of Physics, H., Vol. 36, 407436 DOI: 10.1140/epjh/e2011-20017-4CrossRefGoogle Scholar
Dicke, R. H. & Goldenberg, H. M. 1967, Phys. Rev. Lett., 18, 313CrossRefGoogle Scholar
Dicke, R. H. 1970, ApJ, 159, 123CrossRefGoogle Scholar
Emilio, M., Bush, R. I., Kuhn, J., & Scherrer, P. 2007, ApJ, 660, L161CrossRefGoogle Scholar
Fivian, M. D., Hudson, H. S., Lin, R. P., & Zahid, H. J. 2008, Science, 322, 560. DOI: 10.1126/science.1160863 2008CrossRefGoogle Scholar
Harzer, P. 1891, “Uber die Rotationsbewegung der Sonne”. Astronomische Narchrichten, 3026Google Scholar
Irbah, A., Mecheri, R., Damé, L., & Djafer, D. 2019, Astrophys. J. Lett., 875(2), pp.art. L26CrossRefGoogle Scholar
Kuhn, J. R. 1988, ApJ, 331: L131L134CrossRefGoogle Scholar
Kuhn, J. R. 1989, Sol. Phys., 123, 15CrossRefGoogle Scholar
Kosovichev, A. K. & Rozelot, J. P. 2018, ApJ, 861, Issue 2, article id. 90, 5 pp. DOI: 10.3847/1538-4357/aac81d, arXiv:1805.09385 [astro-ph.SR]CrossRefGoogle Scholar
Kosovichev, A. K. & Rozelot, J. P. 2018, J. Atmos. Sol. Terr. Phys., Vol. 481, p 298129851. DOI: 10.1016/j.jastp.2017.08.004CrossRefGoogle Scholar
Milne, E. A. 1923, Mon. Not. Roy. Astron. Soc., 83, 118CrossRefGoogle Scholar
Newcomb, S. 1865, “Fundamental Constants of Astronomy”, US GPO, Washington, D.C., p. 111Google Scholar
Rozelot, J. P., Damiani, C., & Pireaux, S. 2009, ApJ, 703(2) 1791CrossRefGoogle Scholar
Damiani, C., Rozelot, J. P., Lefebvre, S., Kilcik, A. & Kosovichev, A. G. 2011, J. Atmos. Sol. Terr. Phys., 73, 241250 DOI: 10.1016/j.jastp.2010.02.021CrossRefGoogle Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Kosovichev, A. G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T. D., Title, A., Wolfson, C. J., Zayer, I., MDI Engineering Team, 1995. The solar oscillations investigation - Michelson Doppler Imager. Sol. Phys. 162, 129188CrossRefGoogle Scholar
Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema, J. T., Liu, Y., Duvall, T. L., Zhao, J., Title, A. M., Schrijver, C. J., Tarbell, T. D., Tomczyk, S., 2012. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 207227CrossRefGoogle Scholar
von Zeipel, H. 1924, Mon. Not. Roy. Astron. Soc., 8, 665CrossRefGoogle Scholar