Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T14:37:20.191Z Has data issue: false hasContentIssue false

SK 1: A possible case of triggered star formation in perseus

Published online by Cambridge University Press:  01 August 2006

Miriam Rengel
Affiliation:
Max Planck Institute for Solar System Research, Katlenburg-Lindau, 37191, Germany email: rengel@mps.mpg.de
Klaus Hodapp
Affiliation:
Institute for Astronomy, 640 N. A'hookup Place, Hilo, HI 96720 email: hodapp@ifa.hawaii.edu
Jochen Eislöffel
Affiliation:
Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany email: jochen@tls-tautenburg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

According to a triggered star formation scenario (e.g. Martin-Pintado & Cernicharo 1987) outflows powered by young stellar objects shape the molecular clouds, can dig cavities, and trigger new star formation. NGC 1333 is an active site of low- and intermediate star formation in Perseus and is a suggested site of self-regulated star formation (Norman & Silk 1980). Therefore it is a suitable target for a study of triggered star formation (e.g. Sandell & Knee 2001, SK1). On the other hand, continuum sub-mm observations of star forming regions can detect dust thermal emission of embedded sources (which drive outflows), and further detailed structures.

Within the framework of our wide-field mapping of star formation regions in the Perseus and Orion molecular clouds using SCUBA at 850 and 450 μm, we mapped NCG 1333 with an area of around 14′× 21′. The maps show more structure than the previous maps of the region observed in sub-mm. We have unveiled the known embedded SK 1 source (in the dust shell of the SSV 13 ridge) and detailed structure of the region, among some other young protostars.

In agreement with the SK 1 observations, our map of the region shows lumpy filaments and shells/cavities that seem to be created by outflows. The measured mass of SK 1 (~0.07 M) is much less than its virial mass (~0.2-1 M). Our observations support the idea of SK 1 as an event triggered by outflow-driven shells in NGC 1333 (induced by an increase in gas pressure and density due to radiation pressure from the stellar winds that have presumably created the dust shell). This kind of evidences provides a more thorough understanding of the star formation regulation processes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Adams, F. C. 1991, ApJ 382, 544CrossRefGoogle Scholar
André, P., Ward-Thompson, D. & Barsony, M. 1993, ApJ 406, 122CrossRefGoogle Scholar
Blake, G. A., Sandell, G., vanDishoeck, E. F. Dishoeck, E. F., et al. 1995, ApJ 441, 689CrossRefGoogle Scholar
Bontemps, S., André, P., Terebey, S. & Cabrit, S. 1996, A&A 311, 858Google Scholar
Chini, R., Ward-Thompson, D., Kirk, J. M., et al. 2001, A&A 369, 155Google Scholar
Davis, C. J. & Eislöffel, J. 1995, A&A 300, 851Google Scholar
Elmegreen, B. G. & Lada, C. J. 1977, ApJ 214, 725CrossRefGoogle Scholar
Henriksen, R., André, P. & Bontemps, S. 1997, A&A 323, 549Google Scholar
Hildebrand, R. H. 1983, QJRAS 24, 267Google Scholar
Hodapp, K. W., Bally, J., Eislöffel, J. & Davis, C. J. 2005, AJ 129, 1580CrossRefGoogle Scholar
Jennings, R. E., Cameron, D. H. M., Cudlip, W. & Hirst, C. J. 1987, MNRAS 226, 461CrossRefGoogle Scholar
Jørgensen, J. K., Hogerheijde, M. R., Blake, G. A., van Dishoeck, E. F., Mundy, L. G. & Schöier, F. L. 2004, A&A 415, 1021Google Scholar
Jørgensen, J. K., Hogerheijde, M. R., vanDishoeck, E. F. Dishoeck, E. F., Blake, G. A. & Schöier, F. L. 2004, A&A 413, 993Google Scholar
Knee, L. B. G. & Sandell, G. 2000, A&A 361, 671Google Scholar
Lada, C. J. 1987, in: Peimbert, M. & Jugaku, J. (eds.), Star Forming Regions (Dordrecht: Kluwer), p. 1Google Scholar
Langer, W. D., Castets, A. & Lefloch, B. 1996, ApJ 471, 111CrossRefGoogle Scholar
Lefloch, B., Castets, A., Cernicharo, J. & Loinard, L. 1998, ApJ 504, L109CrossRefGoogle Scholar
Looney, L. W., Mundy, L. G. & Welch, W. J. 2000, ApJ 529, 477CrossRefGoogle Scholar
Martin-Pintado, J. & Cernicharo, J. 1987, A&A 176, 27Google Scholar
Motte, F. & André, P. 2001, A&A 365, 440Google Scholar
Norman, C. & Silk, J. 1980, ApJ 238, 158CrossRefGoogle Scholar
Oort, J. H. & Spitzer, L. Jr., 1955, ApJ 121, 6CrossRefGoogle Scholar
Rebull, L. M., Cole, D. M., Stapelfeltd, K. R. & Werner, M. W. 2003, AJ 125, 2568CrossRefGoogle Scholar
Rengel, M.Froebrich, D., Hodapp, K. & Eislöffel, J. 2002, in: Alves, J. F. & McCaughrean, M. J (eds.), The Origins of Star and Planets: The VLT View (Berlin: Springer), CD-ROMGoogle Scholar
Rengel, M., Froebrich, D., Wolf, S. & Eislöffel, J. 2004, BaltA 13, 449Google Scholar
Rengel, M. 2004, Ph.D. Thesis, Friedrich-Schiller Universität, JenaGoogle Scholar
Rengel, M., Hodapp, K. & Eislöffel, J. 2005, AN 326, 631Google Scholar
Rengel, M., Hodapp, K. & Eislöffel, J. 2006, A&A submittedGoogle Scholar
Rodríguez, L. F., Anglada, G. & Curiel, S. 1999, ApJS 125, 427CrossRefGoogle Scholar
Sandell, G., Knee, L. B. G., Aspin, C., Robson, I. E. & Russell, A. P. G. 1994, A&A 285, L1Google Scholar
Sandell, G. & Knee, L. B. G. 2001, ApJ 546, L49CrossRefGoogle Scholar
Smith, M. D. 1999, ApSS 261, 169Google Scholar
Smith, M.D., 2000, IAJ, 27, 25Google Scholar
Smith, M. D. 2002, in: Alves, J.F. & McCaughrean, M.J (eds.), The Origins of Stars and Planets: The VLT View (Berlin: Springer), CD-ROMGoogle Scholar
Visser, A. E., Richer, J. S. & Chandler, C. J. 2002, AJ 124, 2756CrossRefGoogle Scholar
Wolf, S., Henning, Th. & Stecklum, B. 1999, A&A 349, 839Google Scholar
Young, C. H., Shirley, Y. L., Evans, N. J. II, & Rawlings, J. M. C. 2003, ApJS 145, 111CrossRefGoogle Scholar