Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:28:31.008Z Has data issue: false hasContentIssue false

Simulation of AGN feedback and its impact on galaxies

Published online by Cambridge University Press:  23 June 2017

Martin A. Bourne*
Affiliation:
Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK email: mabourne@ast.cam.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Feedback released during the growth of supermassive black holes is expected to play a key role in shaping black hole-host galaxy co-evolution. Powerful, accretion disc driven winds have been invoked to explain both observed scaling relations (e.g., M − σ) and large-scale outflows with mass outflow rates of ~ 100 − 1000 M yr−1 and momentum rates of up to ~ 30 LAGN/c. Critically, how these winds couple to the host galaxy depends on if they are momentum or energy conserving. I outline observational signatures that could distinguish between these regimes and discuss their roles in establishing galaxy properties. Furthermore, I discuss high-resolution simulations exploring feedback in a multi-phase medium, highlighting how structural properties of galaxies can impact feedback efficiency. Finally, feedback, in the form of collimated jets, is expected to regulate cooling in galaxy clusters. I discuss new simulations of jet feedback using the moving-mesh code AREPO and outline the scope of our new study.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bourne, M. A., Nayakshin, S., & Hobbs, A. 2014, MNRAS, 441, 3055 Google Scholar
Bourne, M. A. & Nayakshin, S. 2013, MNRAS, 436, 2346 Google Scholar
Bower, R. G., Benson, A. J., Malbon, R., et al. 2006, MNRAS, 370, 645 Google Scholar
Cattaneo, A. & Teyssier, R. 2007, MNRAS, 376, 1547 Google Scholar
Cicone, C., Maiolino, R., Sturm, E., et al. 2014, A&A, 562, A21 Google Scholar
Cicone, C., Maiolino, R., Gallerani, S., et al. 2015, A&A, 574, A14 Google Scholar
Croton, D. J., Springel, V., White, S. D. M., et al. 2006, MNRAS, 365, 11 Google Scholar
Curtis, M. & Sijacki, D. 2015, MNRAS, 454, 3445 Google Scholar
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604 CrossRefGoogle Scholar
Fabian, A. C. 2012, ARAA, 50, 455 Google Scholar
Faucher-Giguère, C.-A., Quataert, E., & Murray, N. 2012, MNRAS, 420, 1347 Google Scholar
Faucher-Giguère, C.-A. & Quataert, E. 2012, MNRAS, 425, 605 Google Scholar
Feruglio, C., Fiore, F., Carniani, S., et al. 2015, A&A, 583, A99 Google Scholar
Hitomi Collaboration, Aharonian, F., Akamatsu, H., et al., 2016, Nature, 535, 117 Google Scholar
King, A. 2003, ApJ, 596, L27 Google Scholar
King, A. 2005, ApJ, 635, L121 Google Scholar
King, A. & Pounds, K. 2015, ARAA, 53, 115 Google Scholar
Kormendy, J. & Ho, L. C. 2013, ARAA, 51, 511 Google Scholar
Nayakshin, S. 2014, MNRAS, 437, 2404 Google Scholar
Omma, H., Binney, J., Bryan, G., & Slyz, A. 2004, MNRAS, 348, 1105 Google Scholar
Pounds, K. A. & Vaughan, S. 2011, MNRAS, 413, 1251 Google Scholar
Rupke, D. S. N. & Veilleux, S. 2011, ApJ, 729, L27 Google Scholar
Sijacki, D., Vogelsberger, M., Genel, S., et al. 2015, MNRAS, 452, 575 Google Scholar
Springel, V. 2010, MNRAS, 401, 791 Google Scholar
Sturm, E., González-Alfonso, E., Veilleux, S., et al. 2011, ApJ, 733, L16 Google Scholar
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2010, A&A, 521, A57 Google Scholar
Tombesi, F., Sambruna, R. M., Reeves, J. N., et al. 2010, ApJ, 719, 700 Google Scholar
Tombesi, F., Meléndez, M., Veilleux, S., et al. 2015, Nature, 519, 436 Google Scholar
Wagner, A. Y., Umemura, M., & Bicknell, G. V. 2013, ApJ, 763, L18 Google Scholar
Zubovas, K. & King, A. 2012, ApJ, 745, L34 Google Scholar