Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T13:08:36.860Z Has data issue: false hasContentIssue false

Secular evolution and pseudo-bulges

Published online by Cambridge University Press:  14 May 2020

Francoise Combes*
Affiliation:
Observatoire de Paris, LERMA, Collège de France, CNRS, PSL University, Sorbonne University, UPMC, Paris email: francoise.combes@obspm.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Through vertical resonances, bars can produce pseudo-bulges, within secular evolution. Bulges and pseudo-bulges have doubled their mass since z=1. The frequency of bulge-less galaxies at z=0 is difficult to explain, especially since clumpy galaxies at high z should create classical bulges in all galaxies. This issue is solved in modified gravity models. Bars and spirals in a galaxy disk, produce gravity torques that drive the gas to the center and fuel central star formation and nuclear activity. At 0.1-1kpc scale, observations of gravity torques show that only about one third of Seyfert galaxies experience molecular inflow and central fueling, while in most cases the gas is stalled in resonant rings. At 10-20pc scale, some galaxies have clearly revealed AGN fueling due to nuclear trailing spirals, influenced by the black hole potential. Thanks to ALMA, and angular resolution of up to 80mas, it is possible to reach the central black hole (BH) zone of influence, discover molecular tori, circum-nuclear disks misaligned with the galaxy, and the BH mass can be derived more directly from the kinematics.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Audibert, A., Combes, F., Garcia-Burillo, S., et al. 2019, A&A, in press., arXiv:1905.01979Google Scholar
Busch, G., Eckart, A., Valencia-S, M., et al. 2017, A&A, 598, A55Google Scholar
Buta, R. & Combes, F. 1996, Fund. Cosmic Phys., 17, 95Google Scholar
Ceverino, D., Dekel, A., & Bournaud, F. 2010, MNRAS, 404, 2151Google Scholar
Combes, F. & Sanders, R. H 1981, A&A, 96, 164Google Scholar
Combes, F., Garcia-Burillo, S., Casasola, V., et al. 2014, A&A, 565, A97Google Scholar
Combes, F. 2014, A&A, 571, A82Google Scholar
Combes, F., Garcia-Burillo, S., Audibert, A., et al. 2019, A&A, 623, A79Google Scholar
Di Matteo, P., Fragkoudi, F., Khoperskov, S., et al. 2019, A&A, 628, A11Google Scholar
Emsellem, E., Greusard, D., Combes, F., et al. 2001, A&A, 368, 52Google Scholar
Emsellem, E., Renaud, F., Bournaud, F., et al. 2015, MNRAS, 446, 2468CrossRefGoogle Scholar
Fisher, D. B. & Drory, N. 2010, Ap. J., 716, 94210.1088/0004-637X/716/2/942CrossRefGoogle Scholar
Garcia-Burillo, S. & Combes, F. 2012, JPhCS, 372, a2050Google Scholar
Friedli, D. & Martinet, L. 1993, A&A, 277, 27Google Scholar
Kormendy, J. & Fisher, D.B. 2008, ASPC, 396, 297Google Scholar
Kruk, S. J., Lintott, C. J., Bamford, S. P., et al. 2018, MNRAS, 473, 4731CrossRefGoogle Scholar
Laurikainen, E. & Salo, H. 2017, A&A, 598, A10Google Scholar
Laurikainen, E., Salo, H., Buta, R., & Knapen, J. H. 2011, MNRAS, 418, 1452CrossRefGoogle Scholar
Melvin, T., Masters, K., Lintott, C., et al. 2014, MNRAS, 438, 2882CrossRefGoogle Scholar
Mendez-Abreu, J., Corsini, E. M., Debattista, V. P., et al. 2008, Ap. J., 679, L73CrossRefGoogle Scholar
Mendez-Abreu, J., Debattista, V. P., Corsini, E. M., & Aguerri, J. A. L. 2014, A&A, 572, A25Google Scholar
Mendez-Abreu, J., de Lorenzo-Caceres, A., Gadotti, D. A., et al. 2019, MNRAS, 482, L118CrossRefGoogle Scholar
Mishra, P. K., Wadadekar, Y., & Barway, S. 2017, MNRAS, 467, 2384CrossRefGoogle Scholar
Portaluri, E., Debattista, V. P., Fabricius, M., et al. 2017, MNRAS, 467, 1008Google Scholar
Renaud, F., Bournaud, F., Emsellem, E., et al. 2015, MNRAS, 454, 3299CrossRefGoogle Scholar
Sachdeva, S., Saha, K., & Singh, H. P. 2017, Ap. J., 840, 79CrossRefGoogle Scholar
Wang, L., Wang, L., Li, C., et al. 2019, MNRAS, 484, 386510.1093/mnras/stz279CrossRefGoogle Scholar
Weinzirl, T., Jogee, S., Khochfar, S., et al. 2009, Ap. J., 696, 411CrossRefGoogle Scholar
Wozniak, H., Combes, F., Emsellem, E., & Friedli, D. 2003, A&A, 409, 469Google Scholar