Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T23:04:24.205Z Has data issue: false hasContentIssue false

Searching for IMBHs in Galactic globular clusters through radial velocities of individual stars

Published online by Cambridge University Press:  07 March 2016

Barbara Lanzoni*
Affiliation:
Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy email: barbara.lanzoni3@unibo.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I present an overview of our ongoing project aimed at building a new generation of velocity dispersion profiles ad rotation curves for a representative sample of Galactic globular clusters, from the the radial velocity of hundreds of individual stars distributed at different distances from the cluster center. The innermost portion of the profiles will be used to constrain the possible presence of intermediate-mass black holes. The adopted methodology consists of combining spectroscopic observations acquired with three different instruments at the ESO-VLT: the adaptive-optics assisted, integral field unit (IFU) spectrograph SINFONI for the innermost and highly crowded cluster cores, the multi-IFU spectrograph KMOS for the intermediate regions, and the multi-fiber instrument FLAMES/GIRAFFE-MEDUSA for the outskirts. The case of NGC 6388, representing the pilot project that motivated the entire program, is described in some details.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Anderson, J. & van der Marel, R. P. 2010, ApJ, 710, 1032CrossRefGoogle Scholar
Baumgardt, H., Makino, J., & Hut, P., 2005, ApJ, 620, 238Google Scholar
Bellini, A., Anderson, J., van der Marel, R. P., et al. 2014, ApJ, 797, 115Google Scholar
Binney, J. & Tremaine, S. 1987, Princeton, NJ, Princeton University PressGoogle Scholar
Bellazzini, M., Bragaglia, A., Carretta, E., et al. 2012, A&A, 538, A18Google Scholar
Bozzo, E., Ferrigno, C., Stevens, J., et al. 2011, A&A, 535, L1Google Scholar
Cseh, D., Kaaret, P., Corbel, S., et al. 2010, MNRAS, 406, 1049Google Scholar
Dubath, P., Meylan, G., & Mayor, M. 1997, A&A, 324, 505Google Scholar
Eisenhauer, F.et al., 2003, SPIE, 4841, 1548Google Scholar
Ferraro, F. R., Possenti, A., Sabbi, E., et al. 2003, ApJ, 595, 179Google Scholar
Ferraro, F. R., Beccari, G., Dalessandro, E., et al. 2009a, Nature, 462, 1028Google Scholar
Ferraro, F. R., Dalessandro, E., Mucciarelli, A., et al. 2009b, Nature, 462, 483Google Scholar
Ferraro, F. R.et al., 2012, Nature, 492, 393Google Scholar
Dalessandro, E., Lanzoni, B., Ferraro, F. R., et al. 2008, ApJ, 677, 1069Google Scholar
Gebhardt, K., Pryor, C., O'Connell, R. D., Williams, T. B., & Hesser, J. E. 2000, AJ, 119, 1268CrossRefGoogle Scholar
Gebhardt, K., Rich, R. M., & Ho, L. C. 2005, ApJ, 634, 1093CrossRefGoogle Scholar
Gerssen, J., van der Marel, R. P., Gebhardt, K., et al. 2002, AJ, 124, 3270Google Scholar
Harris, W. E. 1996, AJ, 112, 1487Google Scholar
King, I. R., 1966, AJ, 71, 64CrossRefGoogle Scholar
Kirsten, F. & Vlemmings, W. H. T. 2012, A&A, 542, A44Google Scholar
Lanzoni, B., Dalessandro, E., Ferraro, F. R., et al. 2007, ApJ, 668, L139CrossRefGoogle Scholar
Lanzoni, B., Mucciarelli, A., Origlia, L., et al. 2013, ApJ, 769, 107Google Scholar
Lapenna, E., Origlia, L., Mucciarelli, A., et al. 2015, ApJ, 798, 23Google Scholar
Lützgendorf, N., Kissler-Patig, M., Noyola, E., et al. 2011, A&A 533 A36 (L11)Google Scholar
Lützgendorf, N., Kissler-Patig, M., Gebhardt, K., et al. 2012, A&A, 542, A129Google Scholar
Massari, D., Bellini, A., Ferraro, F. R., et al. 2013, ApJ, 779, 81CrossRefGoogle Scholar
Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285Google Scholar
Martin, N. F., Ibata, R. A., Chapman, S. C., Irwin, M., & Lewis, G. F. 2007, MNRAS, 380, 281Google Scholar
McLaughlin, D. E. & van der Marel, R. P. 2005, ApJS, 161, 304Google Scholar
Miocchi, P. 2007, MNRAS, 381, 103Google Scholar
Miocchi, P.et al., 2013, ApJ, 774, 151Google Scholar
Noyola, E., Gebhardt, K., Kissler-Patig, M., et al. 2010, ApJ, 719, L60CrossRefGoogle Scholar
Nucita, A. A., de Paolis, F., Ingrosso, G., Carpano, S., & Guainazzi, M. 2008, A&A, 478, 763Google Scholar
Origlia, L., Ferraro, F. R., Fusi Pecci, F., & Oliva, E. 1997, A&A, 321, 859Google Scholar
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W. 2004, Nature, 428, 724Google Scholar
Pryor, C. & Meylan, G. 1993, Structure and Dynamics of Globular Clusters, 50, 357Google Scholar
Sollima, A., Bellazzini, M., Smart, R. L., et al. 2009, MNRAS, 396, 2183Google Scholar
Strader, J., Chomiuk, L., Maccarone, T. J., et al. 2012, ApJ, 750, L27Google Scholar
Tonry, J. & Davis, M., 1979, AJ, 84, 1511Google Scholar
Walker, M. G., Mateo, M., Olszewski, E. W., et al. 2006, AJ, 131, 2114Google Scholar
Wilson, C. P. 1975, AJ, 80, 175Google Scholar