Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:36:34.479Z Has data issue: false hasContentIssue false

RR Lyrae stars: prime calibrators of the first rung of the distance ladder

Published online by Cambridge University Press:  26 February 2013

Carla Cacciari*
Affiliation:
INAF–Osservatorio Astronomico, Bologna, Italy email: carla.cacciari@oabo.inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

RR Lyrae variables are the primary standard candles for old stellar populations, and the traditional first step in the definition of the distance scale. Their properties are known on the basis of well-established physical concepts and their calibration is based on several empirical methods. Both aspects are critically reviewed, and their application as distance indicators within the Galaxy and the Local Group are discussed, also in view of the observing facilities that will be available in the near future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Aaronson, M. & Mould, J. 1986, ApJ, 303, 1Google Scholar
Arp, H. C. 1955, AJ, 60, 317Google Scholar
Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2011, AJ, 142, 187Google Scholar
Bono, G. 2003, Lect. Notes Phys., 635, 85Google Scholar
Bono, G., Dall'Ora, M., Caputo, F., et al. 2011, Carnegie Obs. Astrophys. Ser., 5, 1Google Scholar
Borissova, J., Rejkuba, M., Minniti, D., et al. 2009, A&A, 502, 505Google Scholar
Busso, G., Cassisi, S., Piotto, G., et al. 2007, A&A, 474, 105Google Scholar
Cacciari, C., Clementini, G., Castelli, F., & Melandri, F. 2000, Astron. Soc. Pac. Conf. Ser., 203, 176Google Scholar
Cacciari, C. & Clementini, G. 2003, Lect. Notes Phys., 635, 105Google Scholar
Cacciari, C., Corwin, T. M., & Carney, B. W. 2005, AJ, 129, 267Google Scholar
Caloi, V. & D'Antona, F. 2008, ApJ, 673, 847Google Scholar
Caputo, F. 2011, Ap&SS, 341, 77Google Scholar
Carretta, E. & Gratton, R. G. 1997, A&AS, 121, 95Google Scholar
Carretta, E., Gratton, R. G., Clementini, G., & Fusi Pecci, F. 2000, ApJ, 533, 215Google Scholar
Catelan, M., Pritzl, B. J., & Smith, H. A. 2004, ApJS, 154, 633Google Scholar
Catelan, M. & Cortés, C. 2008, ApJ, 676, L135Google Scholar
Catelan, M. 2009, Ap&SS, 320, 261Google Scholar
Christy, R. F. 1966, ARA&A, 4, 353Google Scholar
Clement, C. M., Muzzin, A., Dufton, Q., et al. 2001, AJ, 122, 2587CrossRefGoogle Scholar
Clementini, G., Gratton, R., Bragaglia, A., et al. 2003, AJ, 125, 1309CrossRefGoogle Scholar
D'Antona, F. & Caloi, V. 2004, ApJ, 611, 871Google Scholar
de Grijs, R. 2011, An Introduction to Distance Measurement in Astronomy, WileyGoogle Scholar
Del Principe, M., Piersimeni, A. M., Storm, J., et al. 2006, ApJ, 652, 362Google Scholar
Eyer, L. & Cuypers, J. 2000, Astron. Soc. Pac. Conf. Ser., 203, 71Google Scholar
Federici, L., Cacciari, C., Bellazzini, M., et al. 2012, A&A, 544, A155Google Scholar
Fernley, J., Carney, B. W., Skillen, I., et al. 1998, MNRAS, 293, L61Google Scholar
Ferraro, F. R., Messineo, M., Fusi Pecci, F., et al. 1999, AJ, 118, 1738CrossRefGoogle Scholar
Gallart, C., Zoccali, M., & Aparicio, A. 2005, ARA&A, 43, 387Google Scholar
Gratton, R. G., Carretta, E., & Bragaglia, A. 2012, A&ARev, 20, 50Google Scholar
Harris, W. E. 1996, AJ, 112, 1487 (2010 edition; http://www.physics.mcmaster.ca/Globular.html)Google Scholar
Kinman, T. D. 1959, MNRAS, 119, 538CrossRefGoogle Scholar
Kollmeier, J. A., Szczygiel, D. M., Burns, C. R., et al. 2012, ApJ, submitted (arXiv:1208.2689)Google Scholar
Longmore, A. J., Ferneley, J. A., & Jameson, R. F. 1986, MNRAS, 220, 279Google Scholar
Longmore, A. J., Dixon, R., Skillen, I., Jameson, R. F., & Ferneley, J. A. 1990, MNRAS, 247, 684Google Scholar
Nemec, J. M., Linnell Nemec, A. F., & Lutz, T. E. 1994, AJ, 108, 222Google Scholar
Oosterhoff, P. T. 1939, Obs., 62, 104Google Scholar
Oosterhoff, P. T. 1944, Bull. Astron. Inst. Neth., 10, 55Google Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2006, ApJ, 642, 797CrossRefGoogle Scholar
Piotto, G., Villanova, S., Bedin, L. R., et al. 2005, ApJ, 621, 777Google Scholar
Popowski, P. & Gould, A. 1998, ApJ, 506, 259Google Scholar
Preston, G. W. 1959, ApJ, 130, 507Google Scholar
Riess, A. G., Fliri, J., & Valls-Gabaud, D. 2012, ApJ, 745, 156Google Scholar
Samus, N. N., Durlevich, O. V., Kazarovets, E. V., et al. 2012, General Catalog of Variable Stars (GCVS database 2012), CDS B/gcvsGoogle Scholar
Sandage, A. 1982, ApJ, 252, 553Google Scholar
Sandage, A. 1993, AJ, 106, 719Google Scholar
Sandage, A. 2006, AJ, 131, 1750Google Scholar
Sandage, A. 2010, ApJ, 722, 79Google Scholar
Sandage, A. & Tammann, G. 2006, ARA&A, 44, 93Google Scholar
Shapley, H. 1914, ApJ, 40, 448Google Scholar
Smith, H. A. 1995, Cambridge Astrophys. Ser., 27Google Scholar
Sollima, A., Cacciari, C., Arkharov, A. A. H., et al. 2008, MNRAS, 384, 1583Google Scholar
Sweigart, A. V. & Catelan, M. 1998, ApJ, 501, L63Google Scholar
van Albada, T. S. & Baker, N. 1971, ApJ, 169, 311Google Scholar
van Leeuwen, F. 2007, Hipparcos, the new reduction of the raw data, Dordrecht: SpringerGoogle Scholar