Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T01:09:36.816Z Has data issue: false hasContentIssue false

The role of outflows in black-hole X-ray binaries

Published online by Cambridge University Press:  28 October 2024

Nikolaos D. Kylafis*
Affiliation:
University of Crete, Physics Department, 70013 Heraklion, Greece Institute of Astrophysics, FORTH, 70013 Heraklion, Greece
Pablo Reig*
Affiliation:
University of Crete, Physics Department, 70013 Heraklion, Greece Institute of Astrophysics, FORTH, 70013 Heraklion, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

. An outflow, from the hot inner flow, in black-hole X-ray binaries is always expected due to the positive Bernoulli integral in the hot inner flow. We have demonstrated that, if one considers this outflow as the place where not only Comptonization occurs, but also radio emission, many observed correlations, including the long-standing one between radio and X-rays, can be explained with one simple model.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abramowicz, M. A., Chen, X., Kato, S., & Regev, O. 1995, ApJ, 438, L37 CrossRefGoogle Scholar
Barnier, S., Petrucci, P.-O., Ferreira, J., et al. 2022, A&A, 657, A11 CrossRefGoogle Scholar
Beloborodov, A. M. 1999, ApJ, 510, L123 CrossRefGoogle Scholar
Blandford, R. D., & Begelman, M. C. 1999, MNRAS, 303, L1 CrossRefGoogle Scholar
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883 CrossRefGoogle Scholar
Bright, J. S. Fender, R. P., Motta, S. E., et al. 2020, NatAs, 4, 697Google Scholar
Corbel, S., Coriat, M., Brocksopp, C., et al. 2013, MNRAS, 428, 2500 CrossRefGoogle Scholar
Corbel, S., Fender, R. P., Tzioumis, A. K., Nowak, M., McIntyre, V., Durouchoux, P., & Sood, R. 2000, A&A, 359, 251 Google Scholar
Corbel, S., Nowak, M. A., Fender, R. P., Tzioumis, A. K., & Markoff, S. 2003, A&A, 400, 1007 CrossRefGoogle Scholar
Gallo, E., Fender, R. P., & Pooley, G. G. 2003, MNRAS, 344, 60 CrossRefGoogle Scholar
Giannios, D. 2005, A&A, 437, 1007 CrossRefGoogle Scholar
Giannios, D., Kylafis, N. D., & Psaltis, D. 2004, A&A, 425, 163 CrossRefGoogle Scholar
Hannikainen, D. C., Hunstead, R. W., Campbell-Wilson, D., & Sood, R. K. 1998, A&A, 337, 460 Google Scholar
Kazanas, D. 2015, ASSL, 414, 207 CrossRefGoogle Scholar
Krawczynski, H, Muleri, F., Dovciak, M., et al. 2022, Science, 378, 650 CrossRefGoogle Scholar
Kylafis, N. D., Papadakis, I. E., Reig, P., Giannios, D., & Pooley, G. G. 2008, A&A, 489, 481 CrossRefGoogle Scholar
Kylafis, N. D., & Reig, P. 2018, A&A, 614, L5 CrossRefGoogle Scholar
Kylafis, N. D., Reig, P., & Papadakis, I. 2020, A&A, 640, 16 CrossRefGoogle Scholar
Marcel, G., Ferreira, J., Clavel, M., et al. 2019, A&A, 626, A115 CrossRefGoogle Scholar
Narayan, R., & Yi, I. 1994, ApJ, 428, L13 CrossRefGoogle Scholar
Narayan, R., & Yi, I. 1995, ApJ, 452, 710 CrossRefGoogle Scholar
Reig, P., & Kylafis, N. D. 2015, A&A, 584, 109 CrossRefGoogle Scholar
Reig, P., & Kylafis, N. D. 2019, A&A, 625, 90 CrossRefGoogle Scholar
Reig, P., & Kylafis, N. D. 2021, A&A, 646, 112 CrossRefGoogle Scholar
Reig, P., Kylafis, N. D., and Giannios, D. 2003, A&A, 403, L15 CrossRefGoogle Scholar
Reig, P., Kylafis, N. D., Papadakis, I. E. & Costado, M. 2018, MNRAS, 473, 4644 CrossRefGoogle Scholar
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 CrossRefGoogle Scholar
Shaw, A. W., Plotkin, R. M., Miller-Jones, J. C. A., et al. 2021. ApJ, 907, 34 CrossRefGoogle Scholar