Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T21:25:38.720Z Has data issue: false hasContentIssue false

The role of mass loss in chemodynamical evolution of galaxies

Published online by Cambridge University Press:  30 November 2022

Chiaki Kobayashi*
Affiliation:
Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK email: c.kobayashi@herts.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thanks to the long-term collaborations between nuclear and astrophysics, we have good understanding on the origin of elements in the universe, except for the elements around Ti and some neutron-capture elements. From the comparison between observations of nearby stars and Galactic chemical evolution models, a rapid neutron-capture process associated with core-collapse supernovae is required. The production of C, N, F and some minor isotopes depends on the rotation of massive stars, and the observations of distant galaxies with ALMA indicate rapid cosmic enrichment. It might be hard to find very metal-poor or Population III (and dust-free) galaxies at very high redshifts even with JWST.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Arcones, A., Janka, H.-Th., & Scheck, L. 2007, A&A, 467, 1227 Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARAA, 47, 481 CrossRefGoogle Scholar
Buder, S., Sharma, S., Kos, J., et al. 2021, MNRAS, 506, 150 CrossRefGoogle Scholar
Burrows, A. & Vartanyan, D. 2021, Nature, 589, 29 CrossRefGoogle Scholar
Chiappini, C., Hirschi, R., Meynet, G., et al. 2006, A&A, 449, L27 Google Scholar
Da Costa, G. S. et al. 2019, MNRAS, 489, 5900 CrossRefGoogle Scholar
Dalla Vecchia, C., Schaye, J., 2008, MNRAS, 387, 1431 CrossRefGoogle Scholar
Daveé, R., Anglés-Alcázar, D., Narayanan, D., et al. 2019, MNRAS, 486, 2827 CrossRefGoogle Scholar
Doherty, C. L., Gil-Pons, P., Lau, H. H. B., et al. 2014a, MNRAS, 437, 195 CrossRefGoogle Scholar
Doherty, C. L., Gil-Pons, P., Siess, L., Lattanzio, J. C., Lau, H. H. B., 2015, MNRAS, 446, 2599 CrossRefGoogle Scholar
Franco, M., Coppin, K. E. K., Geach, J. E., et al. 2021, Nature Astronomy, 5, 1240 CrossRefGoogle Scholar
Frischknecht, U., Hirschi, R., Pignatari, M., et al. 2016, MNRAS, 456, 1803 CrossRefGoogle Scholar
Haynes, C. J. & Kobayashi, C. 2019, MNRAS, 483, 5123 CrossRefGoogle Scholar
Janka, H.-T., 2012, Annual Review of Nuclear and Particle Science, 62, 407 CrossRefGoogle Scholar
Karakas, A. I. 2010, MNRAS, 403, 1413 CrossRefGoogle Scholar
Karakas, A. I., Lugaro, M., 2016, ApJ, 825, 26 CrossRefGoogle Scholar
Kemp, A. J., Karakas, A. I., Casey, A. R., et al. 2022, MNRAS, 509, 1175 CrossRefGoogle Scholar
Kobayashi, C., 2004, MNRAS, 347, 740 CrossRefGoogle Scholar
Kobayashi, C., 2005, MNRAS, 361, 1216 CrossRefGoogle Scholar
Kobayashi, C. 2014, IAU Symposium, 298, 167 Google Scholar
Kobayashi, C. 2016, IAU Symposium, 317, 57 Google Scholar
Kobayashi, C., Ishigaki, M. N., Tominaga, N., & Nomoto, K. 2014, ApJ, 5, L5 CrossRefGoogle Scholar
Kobayashi, C., Izutani, N., Karakas, A. I. et al, 2011a, ApJ, 739, L57 CrossRefGoogle Scholar
Kobayashi, C., Karakas, I. A., & Umeda, H. 2011b, MNRAS, 414, 3231 CrossRefGoogle Scholar
Kobayashi, C., Karakas, I. A., & Lugaro, M. 2020a, ApJ, 900, 179 (K20)CrossRefGoogle Scholar
Kobayashi, C., Leung, S.-C. & Nomoto, K. 2020b, ApJ, 895, 138 CrossRefGoogle Scholar
Kobayashi, C. & Nakasato, N. 2011, ApJ, 729, 16 CrossRefGoogle Scholar
Kobayashi, C., Nomoto, K., & Hachisu, I. 2015, ApJ , Letter, 804, 24 Google Scholar
Kobayashi, C., Springel, V, & White, S. D. M. 2007, MNRAS, 376, 1465 CrossRefGoogle Scholar
Kobayashi, C., Tsujimoto, T., Nomoto, K., Hachisu, I, & Kato, M. 1998, ApJ, 503, L155 CrossRefGoogle Scholar
Kobayashi, C., Umeda, H., Nomoto, K., et al. 2006, ApJ, 653, 1145 (K06)CrossRefGoogle Scholar
Grichener, A., Kobayashi, C., & Soker, N. 2022, ApJ, Letter, in pressGoogle Scholar
Grisoni, V., Matteucci, F., Romano, D., et al. 2019, MNRAS, 489, 3539 CrossRefGoogle Scholar
Hayden-Pawson, C., Curti, M., Maiolino, R., et al. 2022, MNRAS, submittedGoogle Scholar
Hopkins, P. F. et al. 2018, MNRAS, 477, 1578 CrossRefGoogle Scholar
Jönsson, H., Ryde, N., Harper, G. M., et al. 2014, A&A, 564, A122 Google Scholar
Just, O., Bauswein, A., Ardevol Pulpillo, R., et al. 2015, MNRAS, 448, 541 CrossRefGoogle Scholar
Leung, S.-C. & Nomoto, K. 2018, ApJ, 861, 143 CrossRefGoogle Scholar
Leung, S.-C. & Nomoto, K. 2020, ApJ, 888, 80 CrossRefGoogle Scholar
Limongi, M., & Chieffi, A. 2018, ApJS, 237, 13 CrossRefGoogle Scholar
Mösta, P., Roberts, L. F., Halevi, G., et al. 2018, ApJ, 864, 171 CrossRefGoogle Scholar
Mura-Guzmán, A., Yong, D., Abate, C., et al. 2020, MNRAS, 498, 3549 CrossRefGoogle Scholar
Nishimura, N., Takiwakai, T., Thielemann, F.-K. 2015, ApJ, 810, 109 CrossRefGoogle Scholar
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARAA, 51, 457 CrossRefGoogle Scholar
Prantzos, N., Abia, C., Limongi, M., Chieffi, A., & Cristallo, S. 2018, MNRAS, 476, 3432 CrossRefGoogle Scholar
Reichert, M., Obergaulinger, M., Eichler, M., Aloy, M. A. & Arcones 2021, MNRAS, 501, 5733 Google Scholar
Romano, D., Matteucci, F., Zhang, Z.-Y., et al. 2019, MNRAS, 490, 2838 CrossRefGoogle Scholar
Smartt, S. J. 2009, ARAA, 47, 63 CrossRefGoogle Scholar
Sneden, C., Cowan, J. J., Kobayashi, C., et al. 2016, ApJ,. 817, 53 CrossRefGoogle Scholar
Siegel, D. M., Barnes, J. & Metzger, B. D. Nature, 569, 241 CrossRefGoogle Scholar
Springel, V., Di Matteo, T., & Hernquist, L. 2005, MNRAS, 361, 776 CrossRefGoogle Scholar
Taylor, P. & Kobayashi, C. 2014, MNRAS, 442, 2751 CrossRefGoogle Scholar
Taylor, P. & Kobayashi, C. 2015a, MNRAS, 448, 1835 CrossRefGoogle Scholar
Taylor, P. & Kobayashi, C. 2015b, MNRAS, 452, L59 CrossRefGoogle Scholar
Taylor, P. & Kobayashi, C. 2016, MNRAS, 463, 2465 CrossRefGoogle Scholar
Taylor, P. & Kobayashi, C. 2017, MNRAS, 471, 3856 CrossRefGoogle Scholar
Vincenzo, F. & Kobayashi, C. 2018a, A&A, 610, L16 Google Scholar
Vincenzo, F. & Kobayashi, C. 2018b, MNRAS, 478, 155 CrossRefGoogle Scholar
Vincenzo, F. & Kobayashi, C. 2020, MNRAS, 496, 80 CrossRefGoogle Scholar
Vincenzo, F., Miglio, A., Kobayashi, C., et al. 2019, A&A, 630, A125 Google Scholar
Wallner, A., Froehlich, M. B., Hotchkis, M. A. C., et al. 2021, Science, 372, 742 CrossRefGoogle Scholar
Wanajo, S., 2013, ApJ, 770, L22 CrossRefGoogle Scholar
Wanajo, S., Janka, H.-T., Müller, B., 2013, ApJ, 767, L26 CrossRefGoogle Scholar
Wanajo, S., Sekiguchi, Y., Nishimura, N., et al. 2014, ApJ, 789, L39 CrossRefGoogle Scholar
Winteler, C., Käppeli, R., Perego, A., et al. 2012, ApJ, Letter, 750, 22 CrossRefGoogle Scholar
Woods, T. E., Agarwal, B., Bromm, V., et al. 2019, PASA, 36, 27 CrossRefGoogle Scholar
Yong, D., Da Costa, G. S., Bessell, M. S., et al. 2021, MNRAS, 507, 4102 CrossRefGoogle Scholar
Yong, D., Kobayashi, C., Da Costa, G. S., et al. 2021, Nature, 595, 223 CrossRefGoogle Scholar