Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T09:14:31.444Z Has data issue: false hasContentIssue false

Rigorous and Phenomenological Equations of State

Published online by Cambridge University Press:  01 April 2008

Werner Däppen
Affiliation:
Department of Physics and Astronomy, University of Southern CaliforniaLos Angeles, CA 90089-1342, USA email: dappen@usc.edu & dmao@usc.edu
Dan Mao
Affiliation:
Department of Physics and Astronomy, University of Southern CaliforniaLos Angeles, CA 90089-1342, USA email: dappen@usc.edu & dmao@usc.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For solar and stellar modeling, a high-quality equation of state is crucial. But the inverse is also true: the astrophysical data (helioseismic today, asteroseismic tomorrow) put constraints on the physical formalisms, making the Sun and the stars laboratories for plasma physics. One of the main astrophysical benefits from a good equation of state is an improved abundance determination. Recent theoretical progress in the equation of state has involved both rigorous and phenomenological approaches, giving the user a considerable choice.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Alastuey, A. & Perez, A. 1992, Europhys. Lett. 20, 19CrossRefGoogle Scholar
Alastuey, A., Cornu, F., & Perez, A. 1994, Phys. Rev. E, 49, 1077CrossRefGoogle Scholar
Alastuey, A., Cornu, F., & Perez, A. 1995, Phys. Rev. E, 51, 1725CrossRefGoogle Scholar
Alastuey, A. & Perez, A. 1996, Phys. Rev. E, 53, 5714CrossRefGoogle Scholar
Basu, S. & Christensen-Dalsgaard, J. 1997, Astron. Astrophys., 322, L5Google Scholar
Berrington, K. A. 1997, The Opacity Project, vol. II, Institute of Physics Publishing. BristolGoogle Scholar
Berthomieu, G., Cooper, A. J., Gough, D. O., Osaki, Y., Provost, J., & Rocca, A. 1980, in Hill, H. A., Dziembowski, W., eds., Lecture Notes in Physics 125, Springer, Heidelberg, p. 307Google Scholar
Christensen-Dalsgaard, J., Gough, D. O., & Toomre, J. 1985, Science, 229, 923CrossRefGoogle Scholar
Christensen-Dalsgaard, J., Däppen, W. & Lebreton, L. 1988, Nature, 336, 634CrossRefGoogle Scholar
Christensen-Dalsgaard, J., Däppen, W., and the GONG Team 1996, Science, 272, 1286CrossRefGoogle Scholar
Däppen, W., 2004, in Danesy, D., ed., Proc. SOHO 14/GONG 2004: Helio- and Asteroseismology: Towards a Golden Future. ESA SP-559, Noordwijk, p. 261Google Scholar
Däppen, W., 2006, J. Phys. A: Math. Gen., 39, 4441CrossRefGoogle Scholar
Däppen, W., Mihalas, D., Hummer, D. G. & Mihalas, B. W. 1988, Astrophys. J., 332, 261CrossRefGoogle Scholar
Ebeling, W., Kraeft, W. D., & Kremp, D., 1976, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids. Akademie-Verlag, DDR-BerlinGoogle Scholar
Gough, D. O., Kosovichev, A. G., Toomre, J., and the GONG Team 1996, Science, 272, 1296CrossRefGoogle Scholar
Gough, D. O. 1993, in Zahn, J.-P., Zinn-Justin, J., eds., Astrophysical Fluid Dynamics, North-Holland, Amsterdam, p. 399Google Scholar
Huang, K., 1963, Statistical Mechanics. John Wiley, New York, Chapt. 14Google Scholar
Hummer, D. G. & Mihalas, D. 1988, Astrophys. J., 331, 794CrossRefGoogle Scholar
Iglesias, C. A. and Rogers, F. J. 1996, Astrophys. J., 464, 943CrossRefGoogle Scholar
Kraeft, W. D., Kremp, D., Ebeling, W., & Röpke, G. 1986 Quantum Statistics of Charged Particle Systems, (New York: Plenum)CrossRefGoogle Scholar
Liang, A., 2004, “Emulating the OPAL equation of state in the chemical picture formalism”, in Equation-of-State and Phase-Transition Issues in Models of Ordinary Astrophysical Matter, edited by Celebonovic, V., Däppen, W., & Gough, D., AIP Conference Proceedings 731, Melville, New York, 2004, p. 106Google Scholar
Liang, A. & Däppen, W. 2003, “Modifications of the Equation of State to Achieve Desired Changes in Thermodynamic Quantities,” in Proc. SOHO 12/GONG+ 2002 Workshop (ESA SP-517, Noordwijk, The Netherlands), p. 333–336.Google Scholar
Liang, A. & Däppen, W. 2004, “Emulating the OPAL equation of state”, in “Helio- and Asteroseismology: Towards a Golden Future”, SOHO14–GONG2004 Meeting held July 12-16 2004 at Yale University, New Haven, CT, USA (ESA Publications Division: Noordwijk, The Netherlands), p. 548.Google Scholar
Mao, D. 2008, PhD Thesis, USC, Los AngelesGoogle Scholar
Mihalas, D., Däppen, W., & Hummer, D. G. 1988, Astrophys. J., 331, 815CrossRefGoogle Scholar
Nayfonov, A., Däppen, W., Hummer, D. G., & Mihalas, D. M. 1999, Astrophys. J., 526, 451464.CrossRefGoogle Scholar
Noels, A., Scuflaire, R., & Gabriel, M. 1984, Astron. Astrophys., 130, 389Google Scholar
Perez, A., Mussack, K., Däppen, W., & Mao, D. 2008, Astron. Astrophys., submitted.Google Scholar
Rogers, F. J. & Nayfonov, A., 2002, Astrophys. J., 576, 1064CrossRefGoogle Scholar
Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996, Astrophys. J., 456, 902CrossRefGoogle Scholar
Seaton, M. J. 1995, The Opacity Project Vol. I, Institute of Physics Publishing. BristolCrossRefGoogle Scholar
Trampedach, R., Däppen, W., & Baturin, V. A., 2006, Astrophys. J., 646, 560CrossRefGoogle Scholar
Ulrich, R. K. 1982, Astrophys. J., 258, 404CrossRefGoogle Scholar