Hostname: page-component-7dd5485656-frp75 Total loading time: 0 Render date: 2025-10-31T14:05:40.676Z Has data issue: false hasContentIssue false

Revisiting mass estimates of the Milky Way

Published online by Cambridge University Press:  30 October 2025

Yongjun Jiao*
Affiliation:
GEPI, Observatoire de Paris, Université PSL, CNRS, Place Jules Janssen, 92195 Meudon, France
François Hammer
Affiliation:
GEPI, Observatoire de Paris, Université PSL, CNRS, Place Jules Janssen, 92195 Meudon, France
Haifeng Wang
Affiliation:
CREF, Centro Ricerche Enrico Fermi, Via Panisperna 89A, I-00184 Roma, Italy
Jianling Wang
Affiliation:
GEPI, Observatoire de Paris, Université PSL, CNRS, Place Jules Janssen, 92195 Meudon, France CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Beijing 100101, China
Yanbin Yang
Affiliation:
GEPI, Observatoire de Paris, Université PSL, CNRS, Place Jules Janssen, 92195 Meudon, France

Abstract

We use the rotation curve from Gaia data release (DR) 3 to estimate the mass of the Milky Way. We consider an Einasto density profile to model the dark matter component. We extrapolate and obtain a dynamical mass at 112 kpc. This lower-mass Milky Way is consistent with the significant declining rotation curve, and can provide new insights into our Galaxy and halo inhabitants.

Information

Type
Poster Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

de Salas, P. F., Malhan, K., Freese, K., et al. 2019, JCAP, 2019, 037.CrossRefGoogle Scholar
Eilers, A.-C., Hogg, D. W., Rix, H.-W., et al. 2019, ApJ, 871,120 CrossRefGoogle Scholar
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1.Google Scholar
Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2022, arXiv:2208.00211.Google Scholar
Hammer, F., Puech, M., Chemin, L., et al. 2007, ApJ, 662, 322.CrossRefGoogle Scholar
Hammer, F., Li, H., Mamon, G. A., et al. 2023, MNRAS, 519, 5059.CrossRefGoogle Scholar
Haywood, M., Di Matteo, P., Lehnert, M. D., et al. 2018, ApJ, 863, 113.CrossRefGoogle Scholar
Jiao, Y., Hammer, F., Wang, J. L., et al. 2021, A&A, 654, A25.Google Scholar
Karukes, E. V., Benito, M., Iocco, F., et al. 2020, JCAP, 2020, 033.CrossRefGoogle Scholar
Lucy, L. B. 1974, AJ, 79, 745.CrossRefGoogle Scholar
Mróz, P., Udalski, A., Skowron, D. M., et al. 2019, ApJL, 870, L10.CrossRefGoogle Scholar
Ou, X., Eilers, A.-C., Necib, L., et al. 2023, arXiv:2303.12838.Google Scholar
Pouliasis, E., Di Matteo, P., & Haywood, M. 2017, A&A, 598, A66.Google Scholar
Sylos Labini, F., Chrobáková, Ž., Capuzzo-Dolcetta, R., et al. 2023, ApJ, 945, 3.CrossRefGoogle Scholar
Wang, J., Hammer, F., & Yang, Y. 2022, MNRAS, 510, 2242.CrossRefGoogle Scholar
Wang, H.-F., Chrobáková, Ž., López-Corredoira, M., et al. 2023, ApJ, 942, 12.CrossRefGoogle Scholar
Zhou, Y., Li, X., Huang, Y., et al. 2023, ApJ, 946, 73.CrossRefGoogle Scholar