Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T00:40:42.814Z Has data issue: false hasContentIssue false

Reconciling the Metallicity Distributions of Gamma-ray Burst, Damped Lyman-α, and Lyman-break Galaxies at z ≈ 3

Published online by Cambridge University Press:  01 June 2008

Johan P. U. Fynbo
Affiliation:
Dark Cosmology Centre, Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, 2100 Copenhagen O, Denmark email: jfynbo@dark-cosmology.dk
J. Xavier Prochaska
Affiliation:
Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064, US
Jesper Sommer-Larsen
Affiliation:
Excellence Cluster Universe, Technische Universität München; Boltz-manstr. 2, D-85748 Garching, Germany
Miroslava Dessauges-Zavadsky
Affiliation:
Observatoire de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland
Palle Møller
Affiliation:
European Southern Observatory, Karl-Scharschild-strasse 2, D-85748 Garching bei München, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We test the hypothesis that the host galaxies of long-duration gamma-ray bursts (GRBs) as well as quasar-selected damped Lyman-α (DLA) systems are drawn from the population of UV-selected star-forming, high z galaxies (generally referred to as Lyman-break galaxies). Specifically, we compare the metallicity distributions of the GRB and DLA populations against simple disk models where these galaxies are drawn randomly from the distribution of star-forming galaxies according to their star-formation rate and HI cross-section respectively. We find that it is possible to match both observational distributions assuming very simple and constrained relations between luminosity, metallicity, metallicity gradients and HI sizes. The simple model can be tested by observing the luminosity distribution of GRB host galaxies and by measuring the luminosity and impact parameters of DLA selected galaxies as a function of metallicity. Our results support the expectation that GRB and DLA samples, in contrast with magnitude limited surveys, provide an almost complete census of star-forming galaxies at z ≈ 3.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Adelberger, K. L. & Steidel, C. C. 2000, ApJ, 544, 218.CrossRefGoogle Scholar
Akerman, C. J., Ellison, S. L., Pettini, M., & Steidel, C. C. 2005, A&A, 440, 499.Google Scholar
Berger, E., Kulkarni, S. R., Bloom, J. S., et al. 2002, ApJ, 581, 981.CrossRefGoogle Scholar
Berger, E., Cowie, L. L., Kulkarni, S. R., et al. 2003, ApJ, 588, 99.CrossRefGoogle Scholar
Berger, E., Fox, D. B., Kulkarni, S. R., et al. 2007, ApJ, 660, 504.CrossRefGoogle Scholar
Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. 2002, AJ, 123, 1111.CrossRefGoogle Scholar
Castro Cerón, J. M., Michałowski, M. J., Hjorth, J., et al. 2007, ApJL, 653, L85.CrossRefGoogle Scholar
Chapman, S. C., Blain, A. W., Smail, I., & Ivison, R. J. 2005, ApJ, 622, 772.CrossRefGoogle Scholar
Chary, R., Becklin, E. E., & Armus, L. 2002, ApJ, 566, 229.CrossRefGoogle Scholar
Chen, H.-W., Lanzetta, K. M., & Fernandez-Soto, A. 2000, ApJ, 533, 120.CrossRefGoogle Scholar
Chen, H.-W., Kennicutt, R. C. Jr., & Rauch, M. 2005, ApJ, 620, 703.CrossRefGoogle Scholar
Christensen, L., Hjorth, J., Gorosabel, J. 2004, A&A, 425, 913.Google Scholar
Cimatti, A., Daddi, E., Cassata, P., et al. 2003, A&A, 412, L1.Google Scholar
Ellison, S. L., Yan, L., Hook, I. M., et al. 2001, A&A, 379, 393.Google Scholar
Ellison, S. L.Churchill, C. W., Rix, S. A., & Pettini, M. 2004, ApJ, 615, 118.CrossRefGoogle Scholar
Ellison, S. L., Hall, P. B., & Lira, P. 2005, AJ, 130, 1345.CrossRefGoogle Scholar
Fernández-Soto, A., Lanzetta, K. M., & Yahil, A. 1999, ApJ, 513, 34.CrossRefGoogle Scholar
Fruchter, A. S., Levan, A., Strolger, L., et al. 2006, Nature, 441, 463.CrossRefGoogle Scholar
Fynbo, J. U., Møller, P., & Warren, S. J. 1999, MNRAS, 305, 849.CrossRefGoogle Scholar
Fynbo, J. P. U., Ledoux, C., Møller, P., et al. 2003, A&A, 407, 147.Google Scholar
Fynbo, J. P. U., Watson, D., Thöne, C. C., et al. 2006a, Nature, 444, 1047.CrossRefGoogle Scholar
Fynbo, J. P. U., Starling, R. L. C., Ledoux, C., et al. 2006b, A&A, 451, L47.Google Scholar
Fynbo, J. P. U., Prochaska, J. X., Sommer-Larsen, J., Dessauges-Zavadsky, M., Møller, P. 2008, ApJ, in press (F08) (arXiv:0801.3273).Google Scholar
Gorosabel, J., Christensen, L., Hjorth, J. et al. 2003a, A&A, 400, 127.Google Scholar
Gorosabel, J., Klose, S., Christensen, L., et al. 2003b, A&A, 409, 123.Google Scholar
Hirschi, R., Meynet, G., & Maeder, A. 2005, A&A, 443, 581.Google Scholar
Hjorth, J., Sollerman, J., Møller, P., et al. 2003, Nature, 423, 847.CrossRefGoogle Scholar
Hogg, D. W. & Fruchter, A. S. 1999, ApJ, 520, 54.CrossRefGoogle Scholar
Hu, E. M., Cowie, L., & McMahon, R. G. 1998, ApJL, 502, L99.CrossRefGoogle Scholar
Jakobsson, P., Björnsson, G., Fynbo, J. P. U., et al. 2005, MNRAS, 362, 245.CrossRefGoogle Scholar
Jaunsen, A. O., Rol, E., Watson, D. J., et al. 2008, ApJ, 681, 453CrossRefGoogle Scholar
Jorgenson, R. A., Wolfe, A. M., Prochaska, J. X., et al. 2006, ApJ, 646, 730.CrossRefGoogle Scholar
Le Floc'h, E., Duc, P.-A., & Mirabel, I. F. 2003, A&A, 400, 499.Google Scholar
Le Floc'h, E., Charmandaris, V., Forrest, W. J., et al. 2006, ApJ, 642, 636.CrossRefGoogle Scholar
Michałlowski, M. J, Hjorth, J., Castro Cerón, J. M., Watson, D. 2008, ApJ, 672, 817.CrossRefGoogle Scholar
Miley, G. & De Breuck, C. 2008, A&ARv, 15, 67.Google Scholar
Møller, P., Warren, S. J., Fall, S. M., Fynbo, J. U. & Jakobsen, P. 2002, ApJ, 574, 51.CrossRefGoogle Scholar
Priddey, R. S., Tanvir, N. R., Levan, A. J., et al. 2006, MNRAS, 369, 1189.CrossRefGoogle Scholar
Prochaska, J. X., et al. 2003, ApJL, 595, L9.CrossRefGoogle Scholar
Prochaska, J. X., Chen, H.-W., Dessauges-Zavadsky, M., & Bloom, J. S. 2007, ApJ, 666, 267.CrossRefGoogle Scholar
Reddy, N. A., Erb, D. K., Steidel, C. C., et al. 2005, ApJ, 633, 748.CrossRefGoogle Scholar
Reddy, N. A., Steidel, C. C., Pettini, M., et al. 2008, ApJS, 175, 48.CrossRefGoogle Scholar
Savaglio, S., NJPh, 8, 195.CrossRefGoogle Scholar
Stanek, K. Z., Matheson, T., Garnavich, P. M., et al. 2003, ApJL, 591, L17.CrossRefGoogle Scholar
Steidel, C. C., Adelberger, K. L., Shaplet, A. E., et al. 2003, ApJ, 592, 728.CrossRefGoogle Scholar
Tanvir, N. R., Barnard, V. E., Blain, A. W., et al. 2004, MNRAS, 352, 1073.CrossRefGoogle Scholar
Tanvir, N. R., Levan, A. J., Rol, E., et al. 2008, MNRAS, in press (arXiv:0803.4100).Google Scholar
van Dokkum, P. G., Quadri, R., Marchesini, D., et al. 2006, ApJL, 638, L59.CrossRefGoogle Scholar
Williams, R. E., Blacker, B., Dickinson, M., et al. 1996, AJ, 112, 1335.CrossRefGoogle Scholar
Wolf, C. & Podsiadlowski, P. 2007, MNRAS, 375, 1049.CrossRefGoogle Scholar
Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2003, ApJ, 593, 235.CrossRefGoogle Scholar
Wolfe, A. M., Owk, J. C., Gawiser, E., Prochaska, J. X., & Lopez, S. 2004, ApJ, 615, 625.CrossRefGoogle Scholar
Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2005, ARA&A, 43, 861.Google Scholar
Woosley, S. E. & Heger, A. 2006, ApJ, 637, 914.CrossRefGoogle Scholar
Zwaan, M., van der Hulst, J. M., Briggs, F. H., et al. 2005, MNRAS, 364, 1467.CrossRefGoogle Scholar