Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T05:29:55.621Z Has data issue: false hasContentIssue false

Realistic models of Globular Clusters with white dwarfs, neutron stars and black holes using GPU supercomputer

Published online by Cambridge University Press:  09 October 2020

Bhusan Kayastha
Affiliation:
University of Chinese Academy of Sciences, 19A Yuquanlu, Shijingshan District, Beijing100049, China email: kayastha@nao.cas.cn National Astronomical Observatories & Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing100101, China Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120 Heidelberg, Germany
Long Wang
Affiliation:
Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo650-0047, Japan
Peter Berczik
Affiliation:
National Astronomical Observatories & Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing100101, China Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120 Heidelberg, Germany Main Astronomical Observatory, National Academy of Sciences, Kyiv, Ukraine
Xiaoying Pang
Affiliation:
Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, No.111 Ren’ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou215123, China
Manuel Arca Sedda
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120 Heidelberg, Germany
Albrecht Kamlah
Affiliation:
Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
Rainer Spurzem
Affiliation:
National Astronomical Observatories & Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing100101, China Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120 Heidelberg, Germany Kavli Institute for Astronomy & Astrophysics, Peking University, Yiheyuan Lu 5, Haidian District, Beijing100871, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present some results from the DRAGON simulations, a set of four direct N-body simulations of globular clusters (GCs) with a million stars and five percent initial (primordial) binaries. These simulations were undertaken with the NBODY6++GPU code, which allowed us to follow dynamical and stellar evolution of individual stars and binaries, formation and evolution of white dwarfs, neutron stars, and black holes, and the effect of a galactic tidal field. The simulations are the largest existing models of a realistic globular cluster over its full lifetime of 12 billion years. In particular we will show here an investigation of the population of binaries including compact objects (such as white dwarfs - cataclysmic variables and merging black hole binaries in the model as counterparts of LIGO/Virgo sources); their distribution in the cluster and evolution with time.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aarseth, S. J. 2003, Gravitational N-Body Simulations, Cambridge University Press10.1017/CBO9780511535246CrossRefGoogle Scholar
Aarseth, S. J. 2012, MNRAS, 422, 84110.1111/j.1365-2966.2012.20666.xCrossRefGoogle Scholar
Belczynski, K., Kalogera, V., & Bulik, T. 2002, ApJ, 572, 40710.1086/340304CrossRefGoogle Scholar
Hobbs, G., Lorimer, D. R., Lyne, A. G., & Kramer, M. 2005, MNRAS, 360, 58410.1111/j.1365-2966.2005.09087.xCrossRefGoogle Scholar
Huang, S., Spurzem, R., & Berczik, P. 2015, arXiv,arXiv:1508.02510Google Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS, 315, 54310.1046/j.1365-8711.2000.03426.xCrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 89710.1046/j.1365-8711.2002.05038.xCrossRefGoogle Scholar
Hurley, J. R., Pols, O. R., Aarseth, S. J., & Tout, C. A. 2007, MNRAS, 363, 292Google Scholar
King, I. R. 1996, AJ, 71, 6410.1086/109857CrossRefGoogle Scholar
Kouwenhoven, M. B. N., Brown, A. G. A., Portegies, Zwart S. F., & Kaper, L. 2007, A&A, 474, 77Google Scholar
Kroupa, P. 1995, MNRAS, 277, 149110.1093/mnras/277.4.1491CrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 23110.1046/j.1365-8711.2001.04022.xCrossRefGoogle Scholar
Nitadori, K. & Aarseth, S. J. 2012, MNRAS, 424, 54510.1111/j.1365-2966.2012.21227.xCrossRefGoogle Scholar
Spurzem, R. & Aarseth, S. J. 1996, MNRAS, 282, 1910.1093/mnras/282.1.19CrossRefGoogle Scholar
Wang, L., Spurzem, R., Aarseth, S., Nitadori, K., Berczik, P., Kouwenhoven, M. B. N., & Naab, T. 2015, MNRAS, 450, 407010.1093/mnras/stv817CrossRefGoogle Scholar
Wang, L., Spurzem, R., Aarseth, S., Giersz, M., Askar, A., Berczik, P., Naab, T., Schadow, R., & Kouwenhoven, M. B. N. 2016, MNRAS, 458, 145010.1093/mnras/stw274CrossRefGoogle Scholar