Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T23:45:11.867Z Has data issue: false hasContentIssue false

Radio pulsar variability

Published online by Cambridge University Press:  20 March 2013

E. F. Keane*
Affiliation:
Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn, Germany. email: ekeane@mpifr-bonn.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsars are potentially the most remarkable physical laboratories we will ever use. Although in many senses they are extremely clean systems there are a large number of instabilities and variabilities seen in the emission and rotation of pulsars. These need to be recognised in order to both fully understand the nature of pulsars, and to enable their use as precision tools for astrophysical investigations. Here I describe these effects, discuss the wide range of timescales involved, and consider the implications for precision pulsar timing.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Andrae, R. 2010, “Error estimation in astronomy: A guide”, astro-ph/1009.2755.Google Scholar
Asseo, E., Pelletier, G., & Sol, H. 1990, MNRAS, 247, 529.Google Scholar
Burke-Spolaor, S. & Bailes, M. 2010, MNRAS, 402, 855.Google Scholar
Burke-Spolaor, S., et al. 2012 MNRAS, 423, 1351.Google Scholar
Camilo, F., et al. 2007, ApJ, 669, 561.CrossRefGoogle Scholar
Camilo, F., et al. 2012, ApJ, 746, 63.CrossRefGoogle Scholar
Contopoulos, I., Kazanas, D., & Fendt, C. 1999, ApJ, 511, 351.Google Scholar
Contopoulos, I. 2005, A&A, 442, 579.Google Scholar
Cordes, J. M. & Shannon, R. M. 2010, ApJ, submitted, astro-ph/1010.3785.Google Scholar
Esamdin, A., et al. 2012, ApJ 759 L3.Google Scholar
Ginzburg, V. L. & Zheleznyakov, V. V. 1970, Comm. Astrophys., 2, 197.Google Scholar
Hankins, T. H., et al. 2003, Nature, 422, 141.Google Scholar
Johnston, S., et al. 2001, ApJ 549 L101.Google Scholar
Keane, E. F., et al. 2011, MNRAS, 415, 3065.CrossRefGoogle Scholar
Keane, E. F. 2010, “Transient Radio Neutron Stars”, Proceedings of HTRA-IV. May 5 - 7, 2010. Agios Nikolaos, Crete Greece.Google Scholar
Keane, E. F. 2010, “The Transient Radio Sky”, PhD thesis, University of Manchester.Google Scholar
Keane, E. F. & McLaughlin, M. A. 2011, Bulletin of the Astronomical Society of India, 39, 1.Google Scholar
Kramer, M., et al. 2006, Science, 312, 549.Google Scholar
Liu, K., et al. 2012, MNRAS, 420, 361.CrossRefGoogle Scholar
Lorimer, D. R., et al. 2012, ApJ, submitted, astro-ph/1208.6576.Google Scholar
Lyne, A. G., et al. 2010, Science, 329, 408.Google Scholar
Lyutikov, M., Blandford, R. D., & Machabeli, G. 1999, MNRAS, 305, 338.Google Scholar
Maron, O., et al. 2000, A&AS, 147, 195.Google Scholar
Melrose, D. 2004, in Young Neutron Stars and Their Environments, Vol. 1, IAU Symposium 218, Astronomical Society of the Pacific, San Francisco, 349.Google Scholar
Michel, F. C. 1973, ApJ 180 L133.Google Scholar
Rickett, B. J. 1975, ApJ, 197, 185.Google Scholar
Ruderman, M. A. & Sutherland, P. G. 1975, ApJ, 196, 51.Google Scholar
Seymour, A. D. & Lorimer, D. R. 2012, MNRAS, in press, astro-ph/1209.5645Google Scholar
Spitkovsky, A. 2006, ApJ 648 L51.Google Scholar
Timokhin, A. N. 2010, MNRAS 408 L41.CrossRefGoogle Scholar
Weltevrede, P., Edwards, R. T., & Stappers, B. W. 2006, A&A, 445, 243.Google Scholar
Young, N. J., et al. 2012, MNRAS, in press, astro-ph/1208.3868.Google Scholar