Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:42:17.890Z Has data issue: false hasContentIssue false

Probing magnetar formation channels with high-precision astrometry: The progress of VLBA astrometry of the fastest-spinning magnetar Swift J1818.0–1607

Published online by Cambridge University Press:  27 February 2023

Hao Ding
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John St., Hawthorn, VIC 3122, Australia ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Australia
Adam Deller
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John St., Hawthorn, VIC 3122, Australia ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Australia
Marcus Lower
Affiliation:
ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Australia CSIRO, Space and Astronomy, Epping, NSW 1710, Australia
Ryan Shannon
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John St., Hawthorn, VIC 3122, Australia ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Boasting supreme magnetic strengths, magnetars are among the prime candidates to generate fast radio bursts. Several theories have been proposed for the formation mechanism of magnetars, but have not yet been fully tested. As different magnetar formation theories expect distinct magnetar space velocity distributions, high-precision astrometry of Galactic magnetars can serve as a probe for the formation theories. In addition, magnetar astrometry can refine the understanding of the distribution of Galactic magnetars. This distribution can be compared against fast radio bursts (FRBs) localized in spiral galaxies, in order to test the link between FRBs and magnetars. Swift J1818.0–1607 is the hitherto fastest-spinning magnetar and the fifth discovered radio magnetar. In an ongoing astrometric campaign, we have observed Swift J1818.0–1607 for one year using the Very Long Baseline Array, and have determined a precise proper motion as well as a tentative parallax for the magnetar.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Andersen, B., Bandura, K., Bhardwaj, M., et al. 2020, arXiv preprint arXiv:2005.10324Google Scholar
Beniamini, P., Hotokezaka, K., van der Horst, A., & Kouveliotou, C. 2019, MNRAS, 487, 1426 Google Scholar
Bochenek, C. D., Ravi, V., Belov, K. V., et al. 2020, Nature, 587, 59 Google Scholar
Borkowski, K. J., & Reynolds, S. P. 2017, ApJ, 846, 13 Google Scholar
Bower, G. C., Deller, A., Demorest, P., et al. 2015, ApJ, 798, 120 CrossRefGoogle Scholar
Champion, D., Cognard, I., Cruces, M., et al. 2020, Monthly Notices of the Royal Astronomical Society, 498, 6044 CrossRefGoogle Scholar
Deller, A., Camilo, F., Reynolds, J., & Halpern, J. 2012, The Astrophysical Journal Letters, 748, L1 Google Scholar
Ding, H., Deller, A. T., Lower, M. E., & Shannon, R. M. 2020 a, ATel, 14005, 1 Google Scholar
Ding, H., Deller, A. T., Lower, M. E., et al. 2020 b, MNRAS, 498, 3736. https://doi.org/10.1093/mnras/staa2531https://doi.org/10.1093/mnras/staa2531 CrossRefGoogle Scholar
Duncan, R. C., & Thompson, C. 1992, ApJL, 392, L9 Google Scholar
Enoto, T., Sakamoto, T., Younes, G., et al. 2020, ATel, 13551, 1 Google Scholar
Fomalont, E. B., & Kopeikin, S. M. 2003, ApJ, 598, 704 CrossRefGoogle Scholar
Giacomazzo, B., & Perna, R. 2013, ApJL, 771, L26 CrossRefGoogle Scholar
Hobbs, G., Lorimer, D., Lyne, A., & Kramer, M. 2005, MNRAS, 360, 974 Google Scholar
Hurley-Walker, N., Zhang, X., Bahramian, A., et al. 2022, Nature, 601, 526. https://doi.org/10.1038/s41586-021-04272-xhttps://doi.org/10.1038/s41586-021-04272-x CrossRefGoogle Scholar
Karuppusamy, R., Desvignes, G., Kramer, M., et al. 2020, ATel, 13553, 1 Google Scholar
Lower, M. E., Johnston, S., Shannon, R. M., Bailes, M., & Camilo, F. 2020, MNRASGoogle Scholar
Lutz, T. E., & Kelker, D. H. 1973, PASP, 85, 573 CrossRefGoogle Scholar
Majid, W. A., Pearlman, A. B., Prince, T. A., Naudet, C. J., & Bansal, K. 2020, ATel, 13898, 1 Google Scholar
Mannings, A. G., Fong, W.-f., Simha, S., et al. 2021, ApJ, 917, 75 Google Scholar
Olausen, S. A., & Kaspi, V. M. 2014, ApJS, 212, 6 CrossRefGoogle Scholar
Roberts, O., Veres, P., Baring, M., et al. 2021, Nature, 589, 207 CrossRefGoogle Scholar
Sarin, N., & Lasky, P. D. 2021, General Relativity and Gravitation, 53, 1 CrossRefGoogle Scholar
Schneider, F. R., Ohlmann, S. T., Podsiadlowski, P., et al. 2019, Nature, 574, 211 CrossRefGoogle Scholar
Svinkin, D., Frederiks, D., Hurley, K., et al. 2021, Nature, 589, 211 CrossRefGoogle Scholar
Tendulkar, S. P., Cameron, P. B., & Kulkarni, S. R. 2013, ApJ, 772, 31 CrossRefGoogle Scholar
Xue, Y., Zheng, X., Li, Y., et al. 2019, Nature, 568, 198 CrossRefGoogle Scholar