Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:50:12.183Z Has data issue: false hasContentIssue false

(Pre)-white dwarf stars as measuring tools for yields of AGB nucleosynthesis

Published online by Cambridge University Press:  09 October 2020

Lisa Löbling*
Affiliation:
Institut für Astronomie und Astrophysik, Sand 1, 72076 Tübingen, Germany email: loebling@astro.uni-tuebingen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the helium-rich intershell region of asymptotic giant branch (AGB) stars, slow neutron-capture nucleosynthesis produces heavy elements beyond iron. If the stars experience a final-flash of the He-burning shell, a pulse-driven convection zone establishes, the stars become hydrogen-deficient and exhibit former intershell material at their surfaces. In their subsequent evolution towards the white-dwarf cooling sequence, but still at constant luminosity, a strong stellar wind prevents diffusion to wipe out the information about AGB yields. We present and interpret the analysis results of hydrogen-rich and -deficient post-AGB stars, discuss difficulties in their analysis and review the implications on the understanding of post-AGB evolution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bailer-Jones, C. A. L. et al. 2018, AJ, 156, 58CrossRefGoogle Scholar
Busso, M. et al. 1999, ARA&A, 37, 239CrossRefGoogle Scholar
Ciardullo, R. & Bond, H. E. 1996, AJ, 111, 2332CrossRefGoogle Scholar
Cummings, J. D. et al. 2018, ApJ, 866, 21CrossRefGoogle Scholar
Herald, J. E. & Bianchi, L. 2002, ApJ, 580, 434CrossRefGoogle Scholar
Hoyer, D. et al. 2017, A&A, 598, A135Google Scholar
Karakas, A. I. & Lugaro, M. 2016, ApJ, 825, 2610.3847/0004-637X/825/1/26CrossRefGoogle Scholar
Löbling, L. 2018, Galaxies, 6, 65CrossRefGoogle Scholar
Löbling, L. et al. 2019a, arXiv e-prints,arXiv:1911.09573Google Scholar
Löbling, L. et al. 2019b, MNRAS, 489, 1054CrossRefGoogle Scholar
Miller Bertolami, M. M. 2016, A&A, 588, A25Google Scholar
Miller Bertolami, M. M. & Althaus, L. G. 2007, A&A, 470, 675Google Scholar
Rauch, T. & Deetjen, J. L. 2003, ASPCS, Vol. 288, 103Google Scholar
Rauch, T. et al. 2017, A&A, 606, A105Google Scholar
Rauch, T. & Werner, K. 1997, The Third Conference on Faint Blue Stars, L. Davis Press, 217Google Scholar
Schoening, T. & Butler, K. 1989a, A&AS, 78, 51Google Scholar
Schoening, T. & Butler, K. 1989b, A&A, 219, 326Google Scholar
Schönberner, D. et al. 2018, A&A, 609, A126Google Scholar
Schönberner, D. & Steffen, M. 2019, A&A, 625, A137Google Scholar
Sowicka, P. et al. 2018, MNRAS, 479, 2476CrossRefGoogle Scholar
Unglaub, K. 2008, A&A, 486, 923Google Scholar
Unglaub, K. & Bues, I. 2000, A&A, 359, 1042Google Scholar
Werner, K. et al. 2010, ApJ, 719, L32CrossRefGoogle Scholar
Ziegler, M. et al. 2012, A&A, 548, A109Google Scholar