Hostname: page-component-54dcc4c588-nx7b4 Total loading time: 0 Render date: 2025-10-07T15:19:52.120Z Has data issue: false hasContentIssue false

Precision spectrophotometry for PNLF distances: the case of NGC 300

Published online by Cambridge University Press:  06 October 2025

Azlizan A. Soemitro*
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), Germany Universität Potsdam, Germany
Martin M. Roth
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), Germany Universität Potsdam, Germany
Peter M. Weilbacher
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), Germany
Robin Ciardullo
Affiliation:
Department of Astronomy & Astrophysics, The Pennsylvania State University, USA
George H. Jacoby
Affiliation:
NSF’s NOIRLab, Tucson, USA
Ana Monreal-Ibero
Affiliation:
Leiden Observatory, Leiden University, The Netherlands
Norberto Castro
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), Germany
Genoveva Micheva
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), Germany

Abstract

The Multi-Unit Spectroscopic Explorer (MUSE) has enabled a renaissance of the planetary nebula luminosity function (PNLF) as a standard candle. In the case of NGC 300, we learned that the precise spectrophotometry of MUSE was crucial to obtain an accurate PNLF distance. We present the advantage of the integral field spectrograph compared to the slit spectrograph in delivering precise spectrophotometry by simulating a slit observation on integral field spectroscopy data. We also discuss the possible systematic shift in measuring the PNLF distance using the least-square method, especially when the PNLF cutoff is affected by small number statistics.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bacon, R. et al. 2010, SPIE, 7735, 773508 Google Scholar
Boyd, J. P. 1978, Journal of Atmospheric Sciences, 35, 2236 2.0.CO;2>CrossRef2.0.CO;2>Google Scholar
Ciardullo, R. 2010, PASA, 27, 149 CrossRefGoogle Scholar
Ciardullo, R. 2022, Frontiers in Astronomy and Space Sciences, 9, 896326 CrossRefGoogle Scholar
Ciardullo, R. et al. 1989, ApJ, 339, 53 CrossRefGoogle Scholar
Filippenko, A. V. 1982, PASP, 94, 715 CrossRefGoogle Scholar
Fried, D. L. 1966, Journal of the Optical Society of America (1917–1983), 56, 1372 CrossRefGoogle Scholar
Jacoby, G. H. 1989, ApJ, 339, 39 CrossRefGoogle Scholar
Jacoby, G. H., Ciardullo, R., Roth, M. M., Arnaboldi, M., & Weilbacher, P. M. 2023, arXiv e-prints, arXiv:2309.11603 Google Scholar
Jacoby, G. H. & De Marco, O. 2002, AJ, 123, 269 CrossRefGoogle Scholar
Jacoby, G. H. & Kaler, J. B. 1993, ApJ, 417, 209 CrossRefGoogle Scholar
Kamann, S., Wisotzki, L., & Roth, M. M. 2013, A&A, 549, A71 Google Scholar
Kreckel, K. et al. 2017, ApJ, 834, 174 CrossRefGoogle Scholar
Longobardi, A. et al. 2013, A&A, 558, A42 Google Scholar
Peña, M. et al. 2012, A&A, 547, A78 Google Scholar
Rodrguez-González, A. et al. 2015, A&A, 575, A1 Google Scholar
Roth, M. M. et al. 2005, PASP, 117, 620 CrossRefGoogle Scholar
Roth, M. M. et al. 2018, A&A, 618, A3 Google Scholar
Roth, M. M. et al. 2021, ApJ, 916, 21 CrossRefGoogle Scholar
Scheuermann, F. et al. 2022, MNRAS, 511, 6087 CrossRefGoogle Scholar
Soemitro, A. A. et al. 2023, A&A, 671, A142 Google Scholar
Soffner, T. et al. 1996, A&A, 306, 9 Google Scholar
Spriggs, T. W. et al. 2020, A&A, 637, A62 Google Scholar
Weilbacher, P. M. et al. 2020, A&A, 641, A28 Google Scholar