Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T22:52:32.717Z Has data issue: false hasContentIssue false

Planetary nebulae in the Magellanic Clouds and Local Group galaxies

Published online by Cambridge University Press:  30 August 2012

Warren A. Reid*
Affiliation:
Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia email: warren.reid@mq.edu.au; war@aao.gov.au Macquarie University Research Centre in Astronomy, Astrophysics & Astrophotonics
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Magellanic Clouds are close enough to the Milky Way to provide an excellent environment in which to study extragalactic PNe. Most of these PNe are bright enough to be spectroscopically observed and spatially resolved. With the latest high resolution detectors on today's large telescopes it is even possible to directly observe a large number of central stars. Magellanic Cloud (MC) PNe provide several astrophysical benefits including low overall extinction and a good sample size covering a large range of dynamic evolutionary timescales while the known distances provide a direct estimation of luminosity and physical dimensions. Multi-wavelength surveys are revealing intriguing differences between MC and Galactic PNe.

Over the past 5 years there has been a substantial increase in the number of PNe discovered in the Large Magellanic Cloud (LMC) in particular. Deep surveys have allowed the faint end of the luminosity function to be investigated, finally providing a strong clue to its overall shape. In so doing, the surveys are approaching completeness, estimated at ~80% in the LMC (~120 deg2) and ~65% in the Small Magellanic Cloud (SMC) (~20 deg2).

The number of galaxies comprising the Local Group (LG) and its outskirts has been growing steadily over the past 5 years and now numbers 48. Most of the 7 newly discovered galaxies are dwarf spheroidal (dSph) in structure and range from 7.6 to 755 kpc from the Milky Way. Nonetheless, there are no published searches for PNe in any of these galaxies to date. Apart from the LMC and Milky Way, the number of PN discoveries has been very modest and only one additional LG galaxy has been surveyed for PNe over the past 5 years. This paper provides the number of Local Group PNe currently known and estimates each galaxy's total PN population.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Acker, A., Ochsenbein, F., Stenholm, B., Tylenda, R., Marcout, J., & Schohn, C. 1996, Strasbourg-ESO catalogue of Galactic planetary nebulae ESO Google Scholar
Bernard-Salas, J., Peeters, E., Sloan, G. C., Cami, J., Guiles, S., & Houk, J. R. 2006, ApJ, 652, L29 CrossRefGoogle Scholar
Buzzoni, A., 1989, AJ Suppl.Ser., 71, 817 CrossRefGoogle Scholar
Buzzoni, A. & Arnaboldi, M. 2006, Procedings of the ESO workshp “Planetary Nebulae beyond the Milky Way”, Eds. Stanghellini, L., Walsh, J.R., Douglas, N.G., p. 36Google Scholar
Ciardullo, R., Jacoby, G. H., Ford, H. C., & Neill, J. D. 1989, ApJ, 339, 53 CrossRefGoogle Scholar
Ciardullo, R., et al. 1999, ApJ, 515, 191 CrossRefGoogle Scholar
Ciardullo, R., et al. 2004, ApJ, 614, 167 CrossRefGoogle Scholar
Cioni, M. R. et al. 2011, A&A, 527, A116 Google Scholar
Corradi, R. L. M., et al. 2005, A&A, 431, 555 Google Scholar
Corradi, R. L. M. & Magrini, L. 2006, Procedings of the ESO workshp “Planetary Nebulae beyond the Milky Way”, Eds. Stanghellini, L., Walsh, J.R., Douglas, N.G., p. 36Google Scholar
Danziger, I. J., Webster, B. L., Dopita, M. A., & Hawarden, T. G. 1978, ApJ, 220, 458 CrossRefGoogle Scholar
Filipovic, M. D., Cohen, M., Reid, W. A., et al. 2009, MNRAS, 399, 769 CrossRefGoogle Scholar
Hernández-Martínez, L. & Peña, M. 2009, A&A, 495, 447 Google Scholar
Hora, J. L., Cohen, M., Ellis, R. G., Meixner, M., et al. 2008, ApJ, 135, 726 CrossRefGoogle Scholar
Iben, I. Jr. 1995, Phys.Reports, 250, 2 CrossRefGoogle Scholar
Jacoby, G. H. 1980, ApJ, 42, 1 Google Scholar
Jacoby, G. H. & Lesser, M. P. 1981, AJ, 86, 185 CrossRefGoogle Scholar
Jacoby, G. H. & De Marco, O. 2002, AJ, 123, 269 CrossRefGoogle Scholar
Jacoby, G. H. 2006, Procedings of the ESO workshp “Planetary Nebulae beyond the Milky Way”, Eds. Stanghellini, L., Walsh, J.R., Douglas, N.G., p. 17Google Scholar
Kaler, J. B. & Jacoby, G. H. 1990, ApJ, 362, 491 CrossRefGoogle Scholar
Keller, S. C. & Wood, P. R. 2006, ApJ, 642, 834 CrossRefGoogle Scholar
Kniazev, A. Y., Pustilnik, S. A., & Zucker, D. B. 2008, MNRAS, 384, 1045 CrossRefGoogle Scholar
Larsen, S. S. 2008, A&A, 477, L17 Google Scholar
Leisy, P., Corradi, R. L. M., Magrini, L., Greimel, R., et al. 2005, A&A, 436, 437 Google Scholar
Leisy, P., Dennefeld, M., 2006, A&A, 456, 466 Google Scholar
Maciel, W. J. & Costa, R. D. D. 2003, IAUS, 209, 551 Google Scholar
Magrini, L., Corradi, R. L. M., Mampaso, A., & Perinotto, M., 2000, A&A, 355, 713 Google Scholar
Magrini, L., Corradi, R. L. M., Greimel, R., Leisy, P., et al. 2003, A&A, 407, 51 Google Scholar
Magrini, L., Corradi, R. L. M., Greimel, R., Leisy, P., et al. 2005, MNRAS, 361, 517 CrossRefGoogle Scholar
Meixner, M., Gordon, K. D., Indebetouw, R., Hora, J. L., et al. 2006, AJ, 132, 2268 CrossRefGoogle Scholar
Merrett, H. et al. 2006, in: Stanghellini, L., Walsh, J.R., & Douglas, N.G. (eds.), Proceedings of the ESO workshp “Planetary Nebulae beyond the Milky Way”, p. 281CrossRefGoogle Scholar
Miszalski, B., et al. 2008, MNRAS, 384, 525 CrossRefGoogle Scholar
Paczynski, B. 1971, Acta Astr., 21, 47 Google Scholar
Parker, Q. A., Acker, A., Frew, D. J., et al. 2006, MNRAS, 373, 79 CrossRefGoogle Scholar
Peimbert, M. 1990 Rev. Mex. Astron. Astrophys., 7, 311 Google Scholar
Peña, M., Richer, M. G., & Stasinska, G. 2007, A&A, 466, 75 Google Scholar
Renzini, A. & Buzzoni, A. 1986, ed., Chiosi, C., Renzini, A. (Reidel, Dordrecht 1986) pp. 195–235CrossRefGoogle Scholar
Reid, W. A. & Parker, Q. A. 2006a, MNRAS, 365, 401 CrossRefGoogle Scholar
Reid, W. A. & Parker, Q. A. 2006b, MNRAS, 373, 521 CrossRefGoogle Scholar
Reid, W.A. 2007 PhD thesis Macquarie UniversityGoogle Scholar
Reid, W. A. & Parker, Q. A. 2010a, MNRAS, 405, 1349 Google Scholar
Reid, W. A. & Parker, Q. A. 2010b, PASA, 27, 187 CrossRefGoogle Scholar
Reid, W. A. & Parker, Q. A. 2011, IAU. Symp. 283, these proceedings.Google Scholar
Sarzi, M., Mamon, G. A., Cappellari, M., et al. 2011, MNRAS, 415, 2832 CrossRefGoogle Scholar
Saviane, I., Exter, K., Tsamis, Y., Gallart, C., & Péquignot, D. 2009, A&A, 494, 515 Google Scholar
Shaw, R. A., Lee, T-H., Stanghellini, L. et al. 2010, ApJ, 717, 562 CrossRefGoogle Scholar
Stanghellini, L., Shaw, R. A., & Gilmore, D. 2005, ApJ, 622, 294 CrossRefGoogle Scholar
Stanghellini, L., Shaw, R. A., Balick, B., Mutchler, M., et al. 2003, ApJ, 671, 1669 CrossRefGoogle Scholar
Terzian, Y. 1997, IAUS, 180, 29 Google Scholar
van der Marel, R. P. & Cioni, M. R. 2001, ApJ, 122, 1827 CrossRefGoogle Scholar
Vassiliadis, E. & Wood, P. R. 1994, AJ Suppl. Ser., 92, 125 CrossRefGoogle Scholar
Zijlstra, A. A. 1999, in Asymptotic Giant Branch Stars, IAU Symposium 191, eds Le Bertre, T., Lebre, A. & Waelkens, C., p. 551 Google Scholar
Zijlstra, A. A., Gesicki, K., Walsh, J. R., et al. 2006, MNRAS, 369, 875 CrossRefGoogle Scholar