Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:34:33.957Z Has data issue: false hasContentIssue false

Pillars, Jets and Dynamical Features

Published online by Cambridge University Press:  27 April 2011

Matthias Gritschneder
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, 100871 Beijing, China email: gritschneder@pku.edu.cn Universitäts-Sternwarte München, 81679 München, Germany
Andreas Burkert
Affiliation:
Universitäts-Sternwarte München, 81679 München, Germany Max Planck Institut für Extraterrestrische Physik, 85748 Garching bei München, Germany
Thorsten Naab
Affiliation:
Universitäts-Sternwarte München, 81679 München, Germany Max Planck Institut für Astrophysik, 85740 Garching bei München, Germany
Stefanie Walch
Affiliation:
School of Physics & Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present high resolution simulations on the impact of ionizing radiation on turbulent molecular clouds. The combination of hydrodynamics, gravitational forces and ionization in the tree-SPH code iVINE naturally leads to the formation of elongated filaments and clumps, which are in excellent agreement with the pillars observed around HII regions. Including gravity the formation of a second generation of low-mass stars with surrounding protostellar disks is triggered at the tips of the pillars, as also observed. A parameter study allows us to determine the physical conditions under which irregular structures form and whether they resemble large pillars or a system of small, isolated globules.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bertoldi, F. 1989, ApJ, 346, 735CrossRefGoogle Scholar
Carlqvist, P., Gahm, G. F., & Kristen, H. 2003, A&A, 403, 399Google Scholar
Dale, J. E., Clark, P. C., & Bonnell, I. A. 2007, MNRAS, 377, 535Google Scholar
Elmegreen, B. G., Kimura, T., & Tosa, M. 1995, ApJ, 451, 675+Google Scholar
Elmegreen, B. G. & Lada, C. J. 1977, ApJ, 214, 725Google Scholar
Frieman, E. A. 1954, ApJ, 120, 18Google Scholar
Gahm, G. F., Carlqvist, P., Johansson, L. E. B., & Nikolić, S. 2006, A&A, 454, 201Google Scholar
Gritschneder, M., Naab, T., Burkert, A., Walch, S., Heitsch, F., & Wetzstein, M. 2009 a, MNRAS, 393, 21Google Scholar
Gritschneder, M., Naab, T., Walch, S., Burkert, A., & Heitsch, F. 2009 b, ApJL, 694, L26Google Scholar
Gritschneder, M., Burkert, A., Naab, T., & Walch, S. 2010, ArXiv e-prints 1009, arXiv:1009.0011Google Scholar
Hester, J. J. et al. 1996, AJ, 111, 2349Google Scholar
Klein, R. I., Sandford, M. T. II, & Whitaker, R. W. 1980, Space Science Reviews, 27, 275Google Scholar
Lefloch, B. & Lazareff, B. 1994, A&A, 289, 559Google Scholar
Mac Low, M.-M., Toraskar, J., Oishi, J. S., & Abel, T. 2007, ApJ, 668, 980Google Scholar
McCaughrean, M. J. & Andersen, M. 2002, A&A, 389, 513Google Scholar
Mellema, G., Arthur, S. J., Henney, W. J., Iliev, I. T., & Shapiro, P. R. 2006, ApJ, 647, 397Google Scholar
Miao, J., White, G. J., Thompson, M. A., & Nelson, R. P. 2009, ApJ, 692, 382Google Scholar
Pound, M. W. 1998, ApJL, 493, L113+Google Scholar
Schuller, F., Leurini, S., Hieret, C., Menten, K. M., Philipp, S. D., Güsten, R., Schilke, P., & Nyman, L. 2006, A&A, 454, L87Google Scholar
Smith, N., Egan, M. P., Carey, S., Price, S. D., Morse, J. A., & Price, P. A. 2000, ApJL, 532, L145Google Scholar
Wünsch, R. & Palouš, J. 2001, A&A, 374, 746Google Scholar