Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T01:03:54.230Z Has data issue: false hasContentIssue false

Physical and dynamical characteristics of icy “dwarf planets” (plutoids)

Published online by Cambridge University Press:  06 April 2010

Gonzalo Tancredi*
Affiliation:
Departamento Astronomía, Facultad de Ciencias, Montevideo, Uruguay email: gonzalo@fisica.edu.uy Observatorio Astronómico Los Molinos, Ministerio de Educación y Cultura, Uruguay
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The geophysical and dynamical criteria introduced in the “Definition of a Planet in the Solar System” adopted by the International Astronomical Union are reviewed. The classification scheme approved by the IAU reflects dynamical and geophysical differences among planets, “dwarf planets” and “small Solar System bodies”. We present, in the form of a decision tree, the set of questions to be considered in order to classify an object as an icy “dwarf planet” (a plutoid). We find that there are 15 very probable plutoids; plus possibly 9 more, which require a reliable estimate of their sizes. Finally, the most relevant physical and dynamical characteristics of the set of icy “dwarf planets” have been reviewed; e.g. the albedo, the lightcurve amplitude, the location in the different dynamical populations, the size distributions, and the discovery rate.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aceituno, J., Santos-Sanz, P., & Ortiz, J. L. 2005, M.P.E.C., 2005-O36Google Scholar
Barucci, M.Capria, M., Harris, A., & Fulchignoni, M. 1989, Icarus, 78, 311CrossRefGoogle Scholar
Brown, M. 2008, in: Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. & Morbidelli, A. (eds.), The Solar System Beyond Neptune (University of Arizona Press, Tucson), p. 335Google Scholar
Chandrasekhar, R. 1987, Ellipsoidal Figures of Equillibrium, Dover Publications, New YorkGoogle Scholar
Duffard, R., Ortiz, J. L., Thirouin, A., Santos-Sanz, P., & Morales, N. 2009, A&A, 505, 1283Google Scholar
Gomes, R. S. 2003, Icarus, 161, 404CrossRefGoogle Scholar
Gomes, R. S. 2003, Celest. Mech. Dyn. Astr., 104, 39CrossRefGoogle Scholar
Magnusson, P. 1991, A&A, 243, 512Google Scholar
Petit, J.-M., Kavelaars, J. J., Gladman, B., & Loredo, T. 2008, in: Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. & Morbidelli, A. (eds.), The Solar System Beyond Neptune (University of Arizona Press, Tucson), p. 71Google Scholar
Petrovic, J. 2003, J. Materials Science, 38, 1CrossRefGoogle Scholar
Soter, S. 2006, AJ, 132, 2513CrossRefGoogle Scholar
Stansberry, J. A., Grundy, W. G., Brown, M., Cruikshank, D. P., Spencer, J., Trilling, D., & Margot, J. L. 2008, in: Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. & Morbidelli, A. (eds.), The Solar System Beyond Neptune (University of Arizona Press, Tucson), p. 161Google Scholar
Stern, S. A. & Levison, H. F. 2002, Highlights Astron., 12, 205CrossRefGoogle Scholar
Tancredi, G. & Favre, S. 2008 (Paper I) Icarus, 195, 851CrossRefGoogle Scholar
Thirouin, A., Ortiz, J. L., Duffard, R., Santos-Sanz, P., Aceituno, F. J., & Morales, N. 2009, A&A, submittedGoogle Scholar