Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:09:26.821Z Has data issue: false hasContentIssue false

Photochemistry of interstellar/circumstellar ices as a contributor to the complex organics in meteorites

Published online by Cambridge University Press:  01 February 2008

Michel Nuevo
Affiliation:
NASA Ames Research Center, Space Science DivisionMail Stop 245-6, Moffett Field, CA 94035, USA email: michel.nuevo-1@nasa.gov, scott.a.sandford@nasa.gov
Scott A. Sandford
Affiliation:
NASA Ames Research Center, Space Science DivisionMail Stop 245-6, Moffett Field, CA 94035, USA email: michel.nuevo-1@nasa.gov, scott.a.sandford@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The UV irradiation of interstellar/circumstellar ice analogs is known to lead to the formation of organic compounds such as amino acids and maybe nucleobases. In this work, the mechanisms of formation and distribution of amino acids, chosen as tracers for the organic compounds formed in such experiments, are studied and compared with meteoritic data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bernstein, M., Dworkin, J., Sandford, S., Cooper, G., & Allamandola, L. 2002, Nature, 416, 401Google Scholar
Charnley, S. B., et al. 2005, Adv. Sp. Res., 36, 137Google Scholar
Cronin, J. R. & Pizzarello, S. 1997, Science, 275, 951Google Scholar
Elsila, J. E., Dworkin, J. P., Bernstein, M. P., Martin, M. P., & Sandford, S. A. 2007, ApJ, 660, 911CrossRefGoogle Scholar
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJS, 151, 35CrossRefGoogle Scholar
Kuan, Y.-J., Charnley, S. B., Huang, H.-C., Tseng, W.-L., & Kisiel, Z. 2003, ApJ, 593, 848CrossRefGoogle Scholar
Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&A, 128, 212Google Scholar
Matrajt, G., Muñoz Caro, G. M., Dartois, E., d'Hendecourt, L., Deboffle, D., & Borg, J. 2005, A&A, 433, 979Google Scholar
Muñoz Caro, G. M., Meierhenrich, U. J., Schutte, W. A., Barbier, B., Arcones Segovia, A., Rosenbauer, H., Thiemann, W. H.-P., Brack, A., & Greenberg, J. M. 2002, Nature, 416, 403Google Scholar
Nuevo, M., Auger, G., Blanot, D., & d'Hendecourt, L. 2008, Orig. Life Evol. Biosph., 38, 37Google Scholar
Sandford, S. A., et al. 2006, Science, 314, 1720Google Scholar
Stoks, P. & Schwartz, A. 1979, Nature, 282, 709CrossRefGoogle Scholar
vander Velden, W. der Velden, W. & Schwartz, A. 1977, Geochim. Cosmochim. Acta, 41, 961Google Scholar