Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:14:20.546Z Has data issue: false hasContentIssue false

PDR Emission from the Arched-Filaments and Nearby Positions

Published online by Cambridge University Press:  09 February 2017

Pablo García
Affiliation:
Instituto de Radioastronomía Milimétrica IRAM Av. Divina Pastora 7, 18012 Granada, Spain email: pgarcia@iram.es
Markus Röllig
Affiliation:
I. Physikalisiches Institut, University of Cologne, Germany
Nicholas Abel
Affiliation:
University of Cincinnati, USA
Martin Steinke
Affiliation:
I. Physikalisiches Institut, University of Cologne, Germany
Michael Burton
Affiliation:
Armagh Observatory and Planetarium, Northern Ireland
Rebecca Blackwell
Affiliation:
School of Physical Sciences, University of Adelaide, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the physical conditions of the gas, atomic and molecular, in the filaments in the context of Photo-Dissociation Regions (PDRs) using the KOSMA-PDR mode of clumpy clouds. We also compare the [CII] vs. [NII] integrated intensity predictions in Abel et al. 2005 for HII regions and adjacent PDRs in the Galactic disk, and check for their applicability under the extreme physical conditions present in the GC. Our preliminary results show that observed integrated intensities are well reproduced by the PDR model. The gas is exposed to a relatively low Far-UV field between 102 – 103 Draine fields. The total volume hydrogen density is well constrained between 104 – 105 cm−3. The hydrogen ionization rate due to cosmic-rays varies between 10−15 and 4× 10−15 s−1, with the highest value ~ 10−14 s−1 found towards G0.07+0.04. Our results show that the line-of-sight contribution to the total distance of the filaments to the Arches Cluster is not negligible. The spatial distribution of the [CII]/[NII] ratio shows that the integrated intensity ratios are fairly homogeneously distributed for values below 10 in energy units. Calculations including variation on the [C/N] abundance ratio show that tight constraints on this ratio are needed to reproduce the observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abel, N. P., Ferland, G. J., Shaw, G., & van Hoof, P. A. M. 2005, ApJS, 161, 65 Google Scholar
Cubick, M., Stutzki, J., Ossenkopf, V., Kramer, C., & Röllig, M. 2008, A&A, 488, 623 Google Scholar
García, P., Simon, R., Stutzki, J., Güsten, R., Requena-Torres, M. A., & Higgins, R. 2016, A&A, 588, A131 Google Scholar
Jones, P. A., Burton, M. G., Cunningham, M. R., Requena-Torres, M. A., Menten, K. M., Schilke, P., Belloche, A., Leurini, S., Martín-Pintado, J., Ott, J. & Walsh, A. J. 2012, MNRAS, 419, 2961 CrossRefGoogle Scholar
Röllig, M., Szczerba, R., Ossenkopf, V., & Glück, C. 2013, A&A, 549, A85 Google Scholar
Rodríguez-Fernández, N. J., Martín-Pintado, J., & de Vicente, P. 2001, A&A, 377, 631 Google Scholar
Serabyn, E. & Guesten, R. 1987, A&A, 184, 133 Google Scholar
Simpson, J. P., Colgan, S. W. J., Cotera, A. S., Erickson, E. F., Hollenbach, D. J., Kaufman, M. J., & Rubin, R. H. 2007, ApJ, 670, 1115 Google Scholar
Stoerzer, H., Stutzki, J., & Sternberg, A. 1996, A&A, 310, 592 Google Scholar
Yusef-Zadeh, F. & Morris, M. 1987, ApJ, 320, 545 CrossRefGoogle Scholar