Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T16:55:52.451Z Has data issue: false hasContentIssue false

The particle and magnetic environments surrounding close-in exoplanets

Published online by Cambridge University Press:  09 September 2016

A. A. Vidotto
Affiliation:
Université de Genève, Chemin des Maillettes 51, Versoix, CH-1290, Switzerland email: Aline.Vidotto@unige.ch
R. Fares
Affiliation:
INAF, Osservatorio Astrofisico di Catania, Via Santa Sofia, 78, 95123 Catania, Italy
M. Jardine
Affiliation:
SUPA, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
C. Moutou
Affiliation:
CFHT, CNRS, 65-1238 Mamalahoa Hwy, Kamuela HI 96743, USA Aix Marseille Université, CNRS, LAM UMR 7326, 13388, Marseille, France
J.-F. Donati
Affiliation:
Université de Toulouse, UPS-OMP, IRAP, 14 avenue E. Belin, Toulouse, F-31400, France CNRS, IRAP / UMR 5277, Toulouse, 14 avenue E. Belin, F-31400, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The proper characterisation of stellar winds is essential for the study of propagation of eruptive events (flares, coronal mass ejections) and the study of space weather events on exoplanets. Here, we quantitatively investigate the nature of the stellar winds surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b, HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive the wind properties at the position of the hot-Jupiters’ orbits (temperature, velocity, magnetic field intensity and pressure). We show that the exoplanets studied here are immersed in a local stellar wind that is much denser than the local conditions encountered around the solar system planets (e.g., 5 orders of magnitude denser than the conditions experienced by the Earth). The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (2 to 3 orders of magnitude larger than the interplanetary medium surrounding the Earth). The characterisation of the host star's wind is also crucial for the study of how the wind interacts with exoplanets. For example, we compute the exoplanetary radio emission that is released in the wind-exoplanet interaction. For the hot-Jupiters studied here, we find radio fluxes ranging from 0.02 to 0.13 mJy. These fluxes could become orders of magnitude higher when stellar eruptions impact exoplanets, increasing the potential of detecting exoplanetary radio emission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bastian, T. S., Dulk, G. A., & Leblanc, Y. 2000, ApJ, 545, 1058 Google Scholar
Donati, J., Howarth, I. D., Jardine, M. M., et al. 2006, MNRAS, 370, 629 Google Scholar
Donati, J.-F. & Brown, S. F. 1997, A&A, 326, 1135 Google Scholar
Fares, R., Donati, J.-F., Moutou, C., et al. 2012, MNRAS, 423, 1006 Google Scholar
Fares, R., Moutou, C., Donati, J.-F., et al. 2013, MNRAS, 435, 1451 Google Scholar
Farrell, W. M., Desch, M. D., & Zarka, P. 1999, JGR, 104, 14025 Google Scholar
Grießmeier, J.-M., Motschmann, U., Mann, G., & Rucker, H. O. 2005, A&A, 437, 717 Google Scholar
Grießmeier, J.-M., Zarka, P., & Girard, J. N. 2011, Radio Science, 46, 0 Google Scholar
Hallinan, G., Sirothia, S. K., Antonova, A., et al. 2013, ApJ, 762, 34 Google Scholar
Jardine, M. & Cameron, A. C. 2008, A&A, 490, 843 Google Scholar
Lazio, T. J. W., Farrell, W. M., Dietrick, J., et al. 2004, ApJ, 612, 511 Google Scholar
Lecavelier des Etangs, A., Sirothia, S. K., & Gopal-Krishna, , Zarka, P. 2013, A&A, 552, A65 Google Scholar
Llama, J., Vidotto, A. A., Jardine, M., et al. 2013, MNRAS, 436, 2179 Google Scholar
Loesch, C., Opher, M., Alves, M. V., Evans, R. M., & Manchester, W. B. 2011, JGR (Space Physics), 116, A04106 Google Scholar
Parker, E. N. 1958, ApJ, 128, 664 Google Scholar
Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I. & de Zeeuw, D. L. 1999, J. of Comp. Physics, 154, 284 Google Scholar
See, V., Jardine, M., Fares, R., Donati, J.-F., & Moutou, C. 2015, MNRAS, 450, 4323 Google Scholar
See, V., Jardine, M., Vidotto, A. A., et al. 2014, A&A, 570, A99 Google Scholar
Sirothia, S. K., Lecavelier des Etangs, A., Gopal-Krishna., Kantharia, N. G., & Ishwar-Chandra, C. H. 2014, A&A, 562, A108 Google Scholar
Smith, A. M. S., Collier Cameron, A., Greaves, J., et al. 2009, MNRAS, 395, 335 Google Scholar
Tóth, G., van der Holst, B., Sokolov, I. V., et al. 2012, Journal of Computational Physics, 231, 870 Google Scholar
Van Doorsselaere, T., Wardle, N., Del Zanna, G., et al. 2011, ApJL, 727, L32 Google Scholar
Vidotto, A. A., Fares, R., Jardine, M., et al. 2012, MNRAS, 423, 3285 Google Scholar
Vidotto, A. A., Fares, R., Jardine, M., Moutou, C., & Donati, J.-F. 2015, MNRAS, 449, 4117 CrossRefGoogle Scholar
Vidotto, A. A., Gregory, S. G., Jardine, M., et al. 2014a, MNRAS, 441, 2361 Google Scholar
Vidotto, A. A., Jardine, M., & Helling, C. 2011a, MNRAS, 411, L46 Google Scholar
Vidotto, A. A., Jardine, M., Morin, J., et al. 2014b, MNRAS, 438, 1162 Google Scholar
Vidotto, A. A., Llama, J., Jardine, M., Helling, C., & Wood, K. 2011b, Astronomische Nachrichten, 332, 1055 Google Scholar
Vidotto, A. A., Opher, M., Jatenco-Pereira, V., & Gombosi, T. I. 2010, ApJ, 720, 1262 Google Scholar
Zarka, P. 2007, Planetary Space Science, 55, 598 Google Scholar