Hostname: page-component-7dd5485656-zlgnt Total loading time: 0 Render date: 2025-11-01T01:25:35.939Z Has data issue: false hasContentIssue false

Parameterization of star clusters in the Magellanic Clouds using Gaia DR3

Published online by Cambridge University Press:  30 October 2025

S. R. Dhanush*
Affiliation:
Indian Institute of Astrophysics, Koramangala, Bangalore, India Pondicherry University, R.V.Nagar. kalapet, Puducherry, India
Annapurni Subramaniam
Affiliation:
Indian Institute of Astrophysics, Koramangala, Bangalore, India
Prasanta Nayak
Affiliation:
Institute of Astrophysics- PUC, Santiago, Chile
Smitha Subramanian
Affiliation:
Indian Institute of Astrophysics, Koramangala, Bangalore, India

Abstract

We have introduced a quantitative and automated method to parameterize star clusters in the Magellanic Clouds (MCs) using the Gaia DR3 data. We used the existing cluster catalogs and extracted their Gaia DR3 data and nearby field regions. We automated the Field Star Decontamination (FSD) algorithm with multiple annular field regions for isolated clusters. We estimated the LMC and SMC clusters’ age, extinction, distance modulus, and metallicity using a Bayesian approach. We expect to parameterize many clusters in the outer LMC with the help of the wide coverage of the Gaia data. We aim to identify correlated cluster formation episodes between the MCs, thereby throwing light on their interaction history. Here we present the preliminary results of this study.

Information

Type
Poster Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bica, E., Bonatto, C., Dutra, C. M., Santos, J. F. C., 2008, MNRAS, 389, 678.CrossRefGoogle Scholar
Bressan, A., Marigo, P., Girardi, L., Salasnich, B., Dal Cero, C., Rubele, S., Nanni, A., 2012, MNRAS, 427, 127.CrossRefGoogle Scholar
Gaia Collaboration, Vallenari A., Brown, A. G. A., Prusti, T., de Bruijne, J. H. J., Arenou, F., Babusiaux, C., et al., 2022, arXiv, arXiv:2208.00211.Google Scholar
Glatt, K., Grebel, E. K., Koch, A., 2010, A&A, 517, A50.CrossRefGoogle Scholar
Graczyk, D., Pietrzyński, G., Thompson, I. B., Gieren, W., Zgirski, B., Villanova, S., Górski, M., et al., 2020, ApJ, 904, 13.CrossRefGoogle Scholar
Piatti, A. E., Geisler, D., 2013, AJ, 145, 17.CrossRefGoogle Scholar
Pietrzyński, G., Graczyk, D., Gallenne, A., Gieren, W., Thompson, I. B., Pilecki, B., Karczmarek, P., et al., 2019, Natur, 567, 200.CrossRefGoogle Scholar
Nayak, P. K., Subramaniam, A., Choudhury, S., Indu, G., Sagar, R., 2016, MNRAS, 463, 1446.CrossRefGoogle Scholar
Nayak, P. K., Subramaniam, A., Choudhury, S., Sagar, R., 2018, A&A, 616, A187.CrossRefGoogle Scholar
Saroon, S., Subramanian, S., 2022, A&A, 666, A103.CrossRefGoogle Scholar
Sitek, M., Szymański, M. K., Skowron, D. M., Udalski, A., Kostrzewa-Rutkowska, Z., Skowron, J., Karczmarek, P., et al., 2016, AcA, 66, 255.Google Scholar
Sitek, M., Szymański, M. K., Udalski, A., Skowron, D. M., Kostrzewa-Rutkowska, Z., Skowron, J., Karczmarek, P., et al., 2017, AcA, 67, 363.Google Scholar
Szewczyk, O., Pietrzyński, G., Gieren, W., Ciechanowska, A., Bresolin, F., Kudritzki, R.-P., 2009, AJ, 138, 1661.CrossRefGoogle Scholar