Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T09:54:47.803Z Has data issue: false hasContentIssue false

PAH clusters as interstellar very small grains

Published online by Cambridge University Press:  12 October 2020

Joseph. E. Roser
Affiliation:
SETI Institute, 189 Bernardo Ave. Suite #200, Mountain View, CA94043 emails: Joseph.E.Roser@nasa.gov, alessandra.ricca-1@nasa.gov NASA Ames Research Center, Mail Stop 245-6, Bldg. N245, Rm. 148, P.O. Box 1, Moffett Field, CA94035
Alessandra Ricca
Affiliation:
SETI Institute, 189 Bernardo Ave. Suite #200, Mountain View, CA94043 emails: Joseph.E.Roser@nasa.gov, alessandra.ricca-1@nasa.gov NASA Ames Research Center, Mail Stop 245-6, Bldg. N245, Rm. 148, P.O. Box 1, Moffett Field, CA94035
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

PAH clusters are one candidate species for the interstellar “very small grains” or “VSGs”, i.e., dust grains small enough to be stochastically heated and contribute to the aromatic infrared emission bands (AIBs). This possibility motivated laboratory experiments on the infrared spectroscopy of PAH clusters using matrix isolation spectroscopy. The spectral shifts due to PAH clustering in argon matrices provide clues for the AIB contribution from PAH clusters in the interstellar medium. Here we review results from a number of small PAH species, extrapolation to the much larger PAHs believed to be present in the interstellar medium, and the implications for a PAH cluster contribution to the VSG population.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1989, ApJS, 71, 733CrossRefGoogle Scholar
Berné, O., Joblin, C., Deville, Y., et al. 2007, A&A, 469, 575Google Scholar
Bregman, J. D., Allamandola, L. J., Tielens, A. G. G. M., et al. 1989, ApJ, 344, 791Google Scholar
Hony, S., Van Kerckhoven, C., Peeters, E., et al. 2001, A&A, 370, 1030Google Scholar
Léger, A. & Puget, J. L. 1984, A&A, 137, L5Google Scholar
Pilleri, P. Montillaud, J., Berné, O., & Joblin, C. 2012, A&A, 542, A69Google Scholar
Puget, J. L. & Léger, A. 1989, ARA&A, 27, 161CrossRefGoogle Scholar
Rapacioli, M., Joblin, C., & Boissel, P. 2005, A&A, 429, 193Google Scholar
Roser, J. E. & Allamandola, L. J. 2010, ApJ, 722, 1932CrossRefGoogle Scholar
Roser, J. E., Ricca, A., & Allamandola, L. J. 2014, ApJ, 783, 97CrossRefGoogle Scholar
Roser, J. E. & Ricca, A. 2015, ApJ, 801, 108CrossRefGoogle Scholar
Tielens, A. G. G. M. 2008, ARA&A, 46, 289CrossRefGoogle Scholar
Tielens, A. G. G. M. 2013, Rev. Mod. Phys., 85, 1021CrossRefGoogle Scholar
Witteborn, F. C., Sandford, S. A., Bregman, J. D., et al. 1989, ApJ, 341, 270CrossRefGoogle Scholar