Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T23:43:45.511Z Has data issue: false hasContentIssue false

The origin of retrograde hot Jupiters

Published online by Cambridge University Press:  10 November 2011

Smadar Naoz
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA email: snaoz@northwestern.edu
Will M. Farr
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA email: snaoz@northwestern.edu
Yoram Lithwick
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA email: snaoz@northwestern.edu
Frederic A. Rasio
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA email: snaoz@northwestern.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many hot Jupiters are observed to be misaligned with respect to the rotation axis of the star (as measured through the Rossiter–McLaughlin effect) and some (about ~ 25%) even appear to be in retrograde orbits. We show that the presence of an additional, moderately inclined and eccentric massive planet in the system can naturally explain close, inclined, eccentric, and even retrograde orbits. We have derived a complete and accurate treatment of the secular dynamics including both the key octupole-order effects and tidal friction. The flow of angular momentum from the inner orbit to the orbit of the perturber can lead to both high eccentricities and inclinations, and even flip the inner orbit. In our treatment the component of the inner orbit's angular momentum perpendicular to the stellar equatorial plane can change sign; a brief excursion to very high eccentricity during the chaotic evolution of the inner orbit can then lead to rapid “tidal capture,” forming a retrograde hot Jupiter. Previous treatments of the secular dynamics focusing on stellar-mass perturbers would not allow for such an outcome, since in that limit the component of the inner orbit's angular momentum perpendicular to the stellar equatorial plane is strictly conserved. Thus, the inclination of the planet's orbit could not change from prograde to retrograde.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Blaes, O., Lee, M. H., & Socrates, A. 2002, ApJ, 578, 775CrossRefGoogle Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580CrossRefGoogle Scholar
Eggleton, P. P., Kiseleva, L. G., & Hut, P. 1998, ApJ, 499, 853CrossRefGoogle Scholar
Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298CrossRefGoogle Scholar
Ford, E. B., Kozinsky, B., & Rasio, F. A. 2000, ApJ, 535, 385CrossRefGoogle Scholar
Gaudi, B. S. & Winn, J. N. 2007, ApJ, 655, 550CrossRefGoogle Scholar
Hansen, B. 2010, ApJ, 723, 285CrossRefGoogle Scholar
Harrington, R. S. 1969, Celestial Mechanics, 1, 200CrossRefGoogle Scholar
Holman, M., Touma, J., & Tremaine, S. 1997, Nature, 386, 254CrossRefGoogle Scholar
Hut, P. 1998, A&A, 99, 134Google Scholar
Jefferys, W. H. & Moser, J. 1966, AJ, 71, 568CrossRefGoogle Scholar
Kalas, P., et al. 2008, Science, 322, 1345CrossRefGoogle Scholar
Kozai, Y. 1962, AJ, 67, 591CrossRefGoogle Scholar
Krymolowski, Y. & Mazeh, T. 1999, MNRAS, 304, 720CrossRefGoogle Scholar
Lai, D., Foucart, F., & Lin, D. N. C. 2011, MNRAS, 412, 2790CrossRefGoogle Scholar
Lidov, M. L. 1962, Planetary and Space Science, 9, 719CrossRefGoogle Scholar
Lin, D. N. C. & Papaloizou, J. 1986, ApJ, 309, 846CrossRefGoogle Scholar
Marois, C., et al. 2008, Science, 322, 1348CrossRefGoogle Scholar
Masset, F. S. & Papaloizou, J. C. B. 2003, ApJ, 588, 494CrossRefGoogle Scholar
Matsumura, S., Peale, S. J., & Rasio, F. A. 2010, ApJ, 725, 1995CrossRefGoogle Scholar
Mazeh, T. & Shaham, J. 1979, A&A, 77, 145Google Scholar
Nagasawa, M., Ida, S., & Bessho, T. 2008, ApJ, 678, 498CrossRefGoogle Scholar
Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., & Teyssandier, J. 2010, Nature, 473, 187CrossRefGoogle Scholar
Naoz, S., Farr, W. M., Lithwick, Y., & Rasio, F. A. 2011, in preparationGoogle Scholar
Nelson, R. P. 2001, Solar and extra-solar planetary systems, 577, 35CrossRefGoogle Scholar
Perets, H. B. & Naoz, S. 2009, ApJ, 699, L17CrossRefGoogle Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Icarus, 124, 62CrossRefGoogle Scholar
Schlaufman, K. C. 2010, ApJ, 712 602CrossRefGoogle Scholar
Triaud, A. H. M. J., et al. 2010, A&A, 524, A25Google Scholar
Winn, J. N., Fabrycky, D., Albrecht, S., & Johnson, J. A. 2010, ApJ, 718 145CrossRefGoogle Scholar
Wu, Y., Murray, N. W., & Ramsahai, J. M. 2007, ApJ, 670, 820CrossRefGoogle Scholar