Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:16:08.287Z Has data issue: false hasContentIssue false

The origin of metal-poor and metal-rich globular clusters in E-MOSAICS

Published online by Cambridge University Press:  11 March 2020

Marta Reina-Campos*
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, 69120 Heidelberg, Germany email: reina.campos@uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It has been a long-standing open question why observed globular cluster (GC) populations of different metallicities differ in their ages and spatial distributions, with metal-poor GCs being the older and radially more extended of the two. We use the suite of 25 Milky Way-mass cosmological zoom-in simulations from the E-MOSAICS project, which self-consistently model the formation and evolution of stellar clusters and their host galaxies, to understand the properties of observed GC populations. We find that the different ages and spatial distributions of metal-poor and metal-rich GCs are the result of regular cluster formation at high redshift in the context of hierarchical galaxy assembly. We also find that metallicity on its own is not a good tracer of accretion, and other properties, such as kinematics, need to be considered.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Brodie, J. P. & Strader, J. 2006, ARAA, 44, 193CrossRefGoogle Scholar
Forbes, D. A. & Bridges, T. 2010, MNRAS, 404, 1203Google Scholar
Kravtsov, A. V. & Gnedin, O. Y. 2005, APJ, 623, 650CrossRefGoogle Scholar
Kruijssen, J. M. D. 2015, MNRAS, 454, 1686CrossRefGoogle Scholar
Kruijssen, J. M. D., Pfeffer, J. L., Crain, R. A., & Bastian, N. 2019, MNRAS, 486, 3134CrossRefGoogle Scholar
Kruijssen, J. M. D., Pfeffer, J. L., Reina-Campos, M., Crain, R. A., & Bastian, N. 2019, MNRAS, 486, 3180CrossRefGoogle Scholar
Griffen, B. F., Drinkwater, M. J., Thomas, P. A., Helly, J. C., & Pimbblet, K. A. 2010, MNRAS, 405, 375Google Scholar
Haywood, M., Di Matteo, P., Lehnert, M. D., Katz, D., & Gómez, A. 2013, AAP, 560, A109CrossRefGoogle Scholar
Mackereth, J. T., Crain, R. A., Schiavon, R. P., Schaye, J., Theuns, T., & Schaller, M. 2018, MNRAS, 477, 5072CrossRefGoogle Scholar
Maiolino, R. & Mannucci, F. 2019, AAPR, 27, 3Google Scholar
Massari, D., Koppelman, H. H., & Helmi, A. 2019, arXiv, arXiv:1906.08271Google Scholar
Pfeffer, J., Kruijssen, J. M. D., Crain, R. A., & Bastian, N. 2018, MNRAS, 475, 4309CrossRefGoogle Scholar
Pfeffer, J. L., Bastian, N., Kruijssen, J. M. D., Reina-Campos, M., Crain, R. A., & Usher, C 2018, arXiv, arXiv:1907.10118Google Scholar
Portegies Zwart, S. F. and McMillan, S. L. W., & Gieles, M. 2010, ARAA, 48, 431CrossRefGoogle Scholar
Reina-Campos, M., Kruijssen, J. M. D., Pfeffer, J. L., Bastian, N., & Crain, R. A. 2019, MNRAS, 486, 5838CrossRefGoogle Scholar
Reina-Campos, M., Kruijssen, J. M. D., Deason, A. J., Pfeffer, J. L., Bastian, N., & Crain, R. A. 2019, MNRAS to be submitted, 486, 5838CrossRefGoogle Scholar
Snaith, O. N., Haywood, M., Di Matteo, P., Lehnert, M. D., Combes, F., Katz, D., & Gómez, A. 2014, APLJ, 781, L31Google Scholar
Snaith, O., Haywood, M., Di Matteo, P., Lehnert, M. D., Combes, F., Katz, D., & Gómez, A. 2015, AAP, 578, A87CrossRefGoogle Scholar
Trenti, M. and Padoan, P., & Jimenez, R. 2015, APJL, 808, L35CrossRefGoogle Scholar
Usher, C., Pfeffer, J., Bastian, N., Kruijssen, J. M. D., Crain, R. A., & Reina-Campos, M. 2018, MNRAS, 480, 3279CrossRefGoogle Scholar