Hostname: page-component-7f64f4797f-42qgm Total loading time: 0 Render date: 2025-11-03T08:54:43.415Z Has data issue: false hasContentIssue false

The orbital poles of the Milky Way streams: testing the MW-M31 flyby scenario

Published online by Cambridge University Press:  30 October 2025

Elena Asencio*
Affiliation:
Helmholtz-Institut für Strahlen und Kernphysik (HISKP), University of Bonn, Nussallee 14-16, D-53115 Bonn, Germany
Pavel Kroupa
Affiliation:
Helmholtz-Institut für Strahlen und Kernphysik (HISKP), University of Bonn, Nussallee 14-16, D-53115 Bonn, Germany Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-180 00 Praha 8, Czech Republic

Abstract

Understanding the origin of the stellar streams around the Milky Way can be of great relevance to learn about the history of the Milky Way and the formation of its substructures. A previous study on the Milky Way streams (Pawlowski et al. 2012) showed that many of these (7 out of 14) present a similar orientation to that of the disk of satellite galaxies (DoS) and the young globular clusters of the Milky Way. This suggests that the DoS, the young globular clusters and a large fraction of the Milky Way streams have a correlated origin. The authors proposed that these substructures could have formed as a result of a past interaction between the Milky Way and the Andromeda galaxy. In this work, we revise the distribution of the orbital poles of the Milky Way streams in light of the latest stream dataset, which includes a total of 97 streams.

Information

Type
Poster Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Banik, I., Thies, I., Truelove, R., Candlish, G., Famaey, B., Pawlowski, M. S., Ibata, R., Kroupa, P., 2022, MNRAS, 513, 129 CrossRefGoogle Scholar
Blek, M., Thies, I., Kroupa, P., Famaey, B., 2018, A&A, 614, A59 CrossRefGoogle Scholar
Erkal, D., Sanders, J. L., Belokurov, V., 2016, MNRAS, 461, 1590 CrossRefGoogle Scholar
Fouquet, S., Hammer, F., Yang, Y., Puech, M., Flores, H., 2012, MNRAS, 427, 1769 CrossRefGoogle Scholar
Kroupa, P., Theis, C., Boily, C. M., 2005, A&A, 431, 517 Google Scholar
Lüghausen, F., Famaey, B., Kroupa, P., 2015, Canadian Journal of Physics, 93, 232 CrossRefGoogle Scholar
Mateu, C., 2023, MNRAS, 520, 5225 CrossRefGoogle Scholar
Metz, M., Kroupa, P., 2007, MNRAS, 376, 387 CrossRefGoogle Scholar
Milgrom, M., 1983, ApJ, 270, 365 CrossRefGoogle Scholar
Odenkirchen, M., et al., 2003, The Astronomical Journal, 10.1086/378601, 126, 2385 CrossRefGoogle Scholar
Pawlowski, M. S., Kroupa, P., de Boer, K. S., 2011, A&A, 532, A118 Google Scholar
Pawlowski, M. S., Pflamm-Altenburg, J., Kroupa, P., 2012, MNRAS, 423, 1109 CrossRefGoogle Scholar
Pawlowski, M. S., Kroupa, P., Jerjen, H., 2013, MNRAS, 435, 1928 CrossRefGoogle Scholar
Riley, A. H., Strigari, L. E., 2020, MNRAS, 494, 983 CrossRefGoogle Scholar
Teyssier, R., 2002, A&A, 385, 337 Google Scholar
Yang, Y., Hammer, F., Fouquet, S., Flores, H., Puech, M., Pawlowski, M. S., Kroupa, P., 2014, MNRAS, 442, 2419 CrossRefGoogle Scholar