Published online by Cambridge University Press: 05 September 2012
Among the diversities in the very early evolution of GRB afterglows are bright optical/near-infrared flares before or superimposed onto an otherwise smoothly decaying afterglow light curve. A lot has been learned about GRBs by using an optical flare or lack thereof as a diagnostic of the emission mechanisms and outflow conditions. In this contribution I will review the observational properties of rising and decaying light-curves in GRB afterglows, discuss their possible physical origins, and highlight in which way they help in understanding GRB and afterglows physics.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.