Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:27:32.291Z Has data issue: false hasContentIssue false

Obscuring and Feeding Supermassive Black Holes with Evolving Nuclear Star Clusters

Published online by Cambridge University Press:  03 June 2010

M. Schartmann
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany Email: schartmann@mpe.mpg.de Universitätssternwarte München, Scheinerstrasse 1, 81679 München, Germany
A. Burkert
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany Email: schartmann@mpe.mpg.de Universitätssternwarte München, Scheinerstrasse 1, 81679 München, Germany Max-Planck-Fellow
M. Krause
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany Email: schartmann@mpe.mpg.de Universitätssternwarte München, Scheinerstrasse 1, 81679 München, Germany
M. Camenzind
Affiliation:
ZAH – Landessternwarte Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
K. Meisenheimer
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
R. I. Davies
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany Email: schartmann@mpe.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently, high-resolution observations made with the help of the near-infrared adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centers of a sample of Seyfert galaxies. With the help of high-resolution hydrodynamical simulations with the pluto code, we follow the evolution of such clusters, especially focusing on mass and energy feedback from young stars. This leads to a filamentary inflow of gas on large scales (tens of parsecs), whereas a turbulent and very dense disk builds up on the parsec scale. Here we concentrate on the long-term evolution of the nuclear disk in NGC 1068 with the help of an effective viscous disk model, using the mass input from the large-scale simulations and accounting for star formation in the disk. This two-stage modeling enables us to connect the tens-of-parsecs scale region (observable with SINFONI) with the parsec-scale environment (MIDI observations). At the current age of the nuclear star cluster, our simulations predict disk sizes of the order 0.8 to 0.9 pc, gas masses of order 106M, and mass transfer rates through the inner boundary of order 0.025 Myr−1, in good agreement with values derived from observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Burtscher, L., Jaffe, W., Raban, D., Meisenheimer, K., Tristram, K. R. W., & Röttgering, H. 2009, ApJ, 705, L53CrossRefGoogle Scholar
Davies, R. I., Mueller Sánchez, F., Genzel, R., Tacconi, L. J., Hicks, E. K. S., Friedrich, S., & Sternberg, A. 2007, ApJ, 671, 1388CrossRefGoogle Scholar
Gallimore, J. F. & Matthews, L. 2003, in Active Galactic Nuclei: From Central Engine to Host Galaxy, ed. Ho, L. C. & Wang, J.-M. (San Francisco: ASP), p. 501Google Scholar
Jaffe, W., Meisenheimer, K., Röttgering, H. J. A., Leinert, Ch., Richichi, A., Chesneau, O., Fraix-Burnet, D., Glazenborg-Kluttig, A., Granato, G.-L., Graser, U., Heijligers, B., Köhler, R., Malbet, F., Miley, G. K., Paresce, F., Pel, J.-W., Perrin, G., Przygodda, F., Schoeller, M., Sol, H., Waters, L. B. F. M., Weigelt, G., Woillez, J., & de Zeeuw, P. T. 2004, Nature, 429, 47CrossRefGoogle Scholar
Jogee, S. 2006, in Lecture Notes in Physics, 693, 143CrossRefGoogle Scholar
Jungwiert, B., Combes, F., & Palouš, J. 2001, A&A, 376, 85Google Scholar
Kishimoto, M., Hönig, S. F., Tristram, K. R. W., & Weigelt, G. 2009, A&A, 493, L57Google Scholar
Kumar, P. 1999, ApJ, 519, 599Google Scholar
Lin, D. N. C. & Pringle, J. E. 1987, ApJ, 320, L87Google Scholar
Lodato, G. & Bertin, G. 2003, A&A, 398, 517Google Scholar
Pringle, J. E. 1981, ARAA, 19, 137CrossRefGoogle Scholar
Raban, D., Jaffe, W., Röttgering, H., Meisenheimer, K., & Tristram, K. R. W. 2009, MNRAS, 394, 1325Google Scholar
Schartmann, M., Meisenheimer, K., Klahr, H., Camenzind, M., Wolf, S., & Henning, Th. 2009, MNRAS, 393, 759Google Scholar
Tristram, K. R. W., Meisenheimer, K., Jaffe, W., Schartmann, M., Rix, H.-W., Leinert, Ch., Morel, S., Wittkowski, M., Röttgering, H., Perrin, G., Lopez, B., Raban, D., Cotton, W. D., Graser, U., Paresce, F., & Henning, Th. 2007, A&A, 474, 837Google Scholar
Tristram, K. R. W., Raban, D., Meisenheimer, K., Jaffe, W., Röttgering, H., Burtscher, L., Cotton, W. D., Graser, U., Henning, Th., Leinert, Ch., Lopez, B., Morel, S., Perrin, G., & Wittkowski, M. 2009, A&A, 502, 67Google Scholar