Published online by Cambridge University Press: 02 March 2005
Radiation hydrodynamics simulations have been used to produce numerical models of the convective surface layers of a number of stars, including the Sun and other stars on or above the main-sequence, white dwarfs of type DA, and red supergiants.
While granulation of main-sequence solar-type stars resembles that of the Sun, the convective velocity fields of F-type stars are much more violent and accompanied by strong pulsations. The properties of the thin convection zone(s) of A-type stars differ again (see Fig. 1). In this contribution, the pattern and dynamics of their surface granulation, the photospheric velocity fields and their effect on line profiles are investigated, based on new 3-D models of surface convection in main-sequence A-type stars with $T_{\rm eff}$=8500 K and 8000 K. Furthermore, we will look below the surface to study overshoot and the interaction of the surface convection zone and the deeper helium II convection zone.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.