Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:43:46.437Z Has data issue: false hasContentIssue false

Nucleosynthesis of the Elements in Faint Supernovae and Hypernovae

Published online by Cambridge University Press:  09 March 2010

Ken'ichi Nomoto
Affiliation:
Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583, Japan email: nomoto@astron.s.u-tokyo.ac.jp Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Takashi Moriya
Affiliation:
Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583, Japan email: nomoto@astron.s.u-tokyo.ac.jp Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Nozomu Tominaga
Affiliation:
Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583, Japan email: nomoto@astron.s.u-tokyo.ac.jp Department of Physics, Konan University, Okamoto, Kobe 658-8501, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the properties of supernovae (SNe) as a function of the progenitor's mass M. (1) Mup - 10 M stars are super-AGB stars and resultant electron capture SNe may be Faint supernovae like Type IIn SN 2008S. (2) 10 - 12 M stars undergo Fe-core collapse to form neutron stars (NSs) and Faint supernovae. (3) 12 M - MBN stars undergo Fe-core collapse to form NSs and normal core-collapse supernovae. (4) MBN - 90 M stars undergo Fe-core collapse to form Black Holes. Resultant supernovae are bifurcate into Hypernovae and Faint supernovae. The observed properties of SN 2008ha can be explained with this type of Faint supernovae. (5) 90 - 140 M stars produce Luminous SNe, like SNe 2007bi and 2006gy. (6) 140 - 300 M stars become pair-instability supernovae which could be Luminous supernovae (SNe 2007bi and 2006gy). (7) Very massive stars with M ≳ 300 M undergo core-collapse to form intermediate mass black holes. Some SNe could be more Luminous supernovae (like SN 2006gy).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Arnett, W. D. 1996, Supernovae and Nucleosynthesis (Princeton: Princeton Univ. Press)CrossRefGoogle Scholar
Barkat, Z., Rakavy, G., & Sack, N. 1967, PRL 18, 379CrossRefGoogle Scholar
Bessell, M. S. & Christlieb, N. 2005, in Hill, V. et al. (eds.), From Lithium to Uranium, Proc. IAU Symposium No. 228 (Cambridge: Cambridge Univ. Press), 237Google Scholar
Cayrel, R., et al. 2004, A&A 416, 1117Google Scholar
Christlieb, N., et al. 2002, Nature 419, 904CrossRefGoogle Scholar
Depagne, E., et al. 2002, A&A 390, 187Google Scholar
Foley, R. J., et al. 2009, AJ 138, 376CrossRefGoogle Scholar
Frebel, A., et al. 2005, Nature 434, 871CrossRefGoogle Scholar
Fryer, C., et al. 2009, arXiv:0908.0701Google Scholar
Gal-Yam, A., et al. 2009, Nature 462, 624CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2002, ApJ 567, 532CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2008, ApJ submitted (arXiv:0803.3161)Google Scholar
Iwamoto, K., Mazzali, P. A., Nomoto, K., et al. 1998, Nature 395, 672CrossRefGoogle Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K. 2005, Science 309, 451CrossRefGoogle Scholar
Kawabata, K., Maeda, K., Nomoto, K., et al. 2009, arXiv:0906.4573Google Scholar
Kitaura, F. S., Janka, H.-Th., & Hillebrandt, W. 2006, A&A 450, 345Google Scholar
Koch, A., et al. 2008, ApJ 688, L13CrossRefGoogle Scholar
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. 2006, ApJ 653, 1145CrossRefGoogle Scholar
Limongi, M., Straniero, O., & Chieffi, A. 2000, ApJS 129, 625CrossRefGoogle Scholar
Maeda, K. & Nomoto, K. 2003, ApJ 598, 1163CrossRefGoogle Scholar
Moriya, T., et al. 2009, ApJ submittedGoogle Scholar
Nomoto, K. 1984, ApJ 277, 791CrossRefGoogle Scholar
Nomoto, K. & Hashimoto, M. 1988, Phys. Rep. 163, 13CrossRefGoogle Scholar
Nomoto, K., et al. 2005, in The Fate of Most Massive Stars, ed. Humphreys, R. & Stanek, K. (ASP Ser. 332), 374 (astro-ph/0506597)Google Scholar
Nomoto, K., et al. 2006, Nuclear Phys A 777, 424 (astro-ph/0605725)CrossRefGoogle Scholar
Nomoto, K., et al. 2009, in IAU Symp. 254, The Galaxy Disk in Cosmological Context, ed. Andersen, J., et al. (Cambridge: Cambridge Univ. Press), 355 (arXiv: 0901.4536)Google Scholar
Ohkubo, T., Umeda, H., Maeda, K., Nomoto, K., Suzuki, T., Tsuruta, S., & Rees, M. J. 2006, ApJ 645, 1352CrossRefGoogle Scholar
Ohkubo, T., Nomoto, K., Umeda, H., Yoshida, N., & Tsuruta, S. 2009, ApJ 706, 1184CrossRefGoogle Scholar
Prieto, J. L., et al. 2008, ApJ 681, L9CrossRefGoogle Scholar
Pumo, M. L., et al. 2009, ApJ 705, L138CrossRefGoogle Scholar
Smartt, S. J. 2009, ARA&A 47, 63Google Scholar
Thompson, T. A., et al. 2009, ApJ 705, 1364CrossRefGoogle Scholar
Tominaga, N., Maeda, K., Umeda, H., Nomoto, K., Tanaka, , et al. 2007, ApJ 657, L77CrossRefGoogle Scholar
Tominaga, N. 2009, ApJ 690, 526CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2002, ApJ 565, 385CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2008, ApJ 673, 1014CrossRefGoogle Scholar
Valenti, S., et al. 2009, Nature 459, 674CrossRefGoogle Scholar
Wanajo, S., Nomoto, K., Janka, H.-T., Kitaura, F. S., & Müller, B. 2009, ApJ 695, 208CrossRefGoogle Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature 450, 390CrossRefGoogle Scholar
Young, D. R., et al. 2009, arXiv:0910.2248Google Scholar
Yoshida, N., Omukai, K., & Hernquist, L. 2008, Science 321, 669CrossRefGoogle Scholar