Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T11:41:27.875Z Has data issue: false hasContentIssue false

Nucleosynthesis Now and Then

Published online by Cambridge University Press:  09 March 2010

S. E. Woosley
Affiliation:
Department of Asronomy and Astrophysics, UCSC Santa Cruz, CA 95064, USA email: woosley@ucolick.org
A. Heger
Affiliation:
School of Physics & Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA email: alex@physics.umn.edu
L. Roberts
Affiliation:
Department of Asronomy and Astrophysics, UCSC Santa Cruz, CA 95064, USA email: woosley@ucolick.org
R. D. Hoffman
Affiliation:
Nuclear Computational Physics Group, Physics and Life Sciences Directorate, LLNL, Livermore, CA, 94550, USA email: hoffman21@llnl.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Today we understand, to reasonable accuracy, the origin of most of the abundant elements in the sun and similar Population I stars. Given our relatively primitive ability to model supernova explosion mechanisms, stellar mass loss, and stellar mixing, this is a remarkable achievement. This understanding is possible, in part, because supernovae are highly constrained by their spectra, light curves and the sorts of remnants they leave. This same understanding extends to the major abundances seen in primitive metal-poor stars down to [Fe/H] > −4. In particular, one finds no compelling evidence for exotic energies or unusual stellar properties. There are exceptions, however. About half of the isotopes above iron, the r-process and the p-process with A < 130, still have an uncertain origin, both in the sun and in metal-poor stars. The abundances in the hyper-iron-poor stars ([Fe/H] < −4) also require a special explanation. We suggest that they represent the operation of a first generation of massive stars that produced almost exclusively C, N, and O and black holes, a generation in which 100 M were abundant, but stars over about 150 M and under 30 M were almost absent.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aoki, W. et al. 2006, ApJ, 639, 897CrossRefGoogle Scholar
Argast, D., Samland, M., Thielemann, F.-K., & Qian, Y.-Z. 2004, Astron. & Ap., 416, 997Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. 1957, Reviews of Modern Physics, 29, 547CrossRefGoogle Scholar
Burrows, A., Livne, E., Dessart, L., Ott, C. D., & Murphy, J. 2007, ApJ, 655, 416CrossRefGoogle Scholar
Cameron, A. G. W. 1957, Chalk River Report, CRL 41Google Scholar
Cayrel, R., et al. 2004, Astro. & Ap., 416, 1117CrossRefGoogle Scholar
Christlieb, N., et al. 2002, Nature, 419, 904CrossRefGoogle Scholar
Christlieb, N., et al. 2004, ApJ, 603, 708CrossRefGoogle Scholar
Ekström, S., Meynet, G., Chiappini, C., Hirschi, R., & Maeder, A. 2008, Astro. & Ap., 489, 685CrossRefGoogle Scholar
Eldridge, J. J. & Vink, J. S. 2006, ApJ, 452, 295Google Scholar
Frebel, A., et al. 2005, Nature, 434, 871CrossRefGoogle Scholar
Frebel, A., Collet, R., Eriksson, K., Christlieb, N., & Aoki, W. 2008, ApJ, 684, 588CrossRefGoogle Scholar
Fröhlich, C., Martínez-Pinedo, G., Liebendörfer, M., Thielemann, F.-K., Bravo, E., Hix, W. R., Langanke, K., & Zinner, N. T. 2006, Physical Review Letters, 96, 142502CrossRefGoogle Scholar
Hamuy, M. 2006, ApJ, 582, 905CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2009, ApJ, submitted, astroph 0803.3161Google Scholar
Hoffman, R. D., Woosley, S. E., Fuller, G. M., & Meyer, B. S. 1996, ApJ, 460, 478CrossRefGoogle Scholar
Hoffman, R. D., Müller, B., & Janka, H.-T. 2008, ApJ Lettr., 676, L127CrossRefGoogle Scholar
Horowitz, C. J. 2002, Phys. Rev. D, 65, 043001CrossRefGoogle Scholar
Hoyle, F. & Fowler, W. A. 1960, ApJ, 132, 565CrossRefGoogle Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K. 2005, Science, 309, 451CrossRefGoogle Scholar
Joggerst, C. C., Almgren, A., Bell, J., Heger, A., Whalen, D., & Woosley, S. E. 2009, ApJ, in press, astroph 0907.3885Google Scholar
Kasen, D. & Woosley, S. E. 2009, ApJ, 703, 2205CrossRefGoogle Scholar
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. 2006, ApJ, 653, 1145CrossRefGoogle Scholar
Komiya, Y., Suda, T., Minaguchi, H., Shigeyama, T., Aoki, W., & Fujimoto, M. Y. 2007, ApJ, 658, 367CrossRefGoogle Scholar
Lai, D. K., Bolte, M., Johnson, J. A., Lucatello, S., Heger, A., & Woosley, S. E. 2008, ApJ, 681, 1524CrossRefGoogle Scholar
Limongi, M. & Chieffi, A. 2009, Memorie della Societa Astronomica Italiana, 80, 151Google Scholar
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2005, Astron. & Ap., 442, 1135Google Scholar
Metzger, B. D., Thompson, T. A., & Quataert, E. 2007, ApJ, 659, 561CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 2005, Astron. & Ap., 429, 581Google Scholar
Meynet, G., Ekström, S., & Maeder, A. 2006, Astron. & Ap., 447, 623Google Scholar
Otsuki, K., Burrows, A., & Matos, M. 2008, Proceedings of the 10th Symposium on Nuclei in the Cosmos. Available on line at http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=53,Google Scholar
Pruet, J., Hoffman, R. D., Woosley, S. E., Janka, H.-T., & Buras, R. 2006, ApJ, 644, 1028CrossRefGoogle Scholar
Qian, Y.-Z., & Woosley, S. E. 1996, ApJ, 471, 331CrossRefGoogle Scholar
Roberts, L., Woosley, S. E., & Hoffman, R. D. 2009, in preparation for ApJGoogle Scholar
Sobeck, J. S., Lawler, J. E., & Sneden, C. 2007, ApJ, 667, 1267CrossRefGoogle Scholar
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y., & Iben, I. J. 2004, ApJ, 611, 476CrossRefGoogle Scholar
Tan, J. C. & McKee, C. F. 2004, ApJ, 603, 383CrossRefGoogle Scholar
Thorsett, S. E. & Chakrabarty, D. 1999, ApJ, 512, 288CrossRefGoogle Scholar
Tumlinson, J. 2007, ApJ, 665, 1361CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2003, Nature, 422, 871CrossRefGoogle Scholar
Vink, J. S. & de Koter, A. 2005, Astron. & Ap., 442, 587Google Scholar
Wanajo, S., Nomoto, K., Janka, H.-T., Kitaura, F. S., Müller, B. 2009, ApJ, 695, 208CrossRefGoogle Scholar
Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978, ApJ, 225, 1021CrossRefGoogle Scholar
Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D., & Meyer, B. S. 1994, ApJ, 433, 229CrossRefGoogle Scholar
Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Reviews of Modern Physics, 74, 1015CrossRefGoogle Scholar
Woosley, S. E. & Heger, A. 2007, Physics Reports, 442, 269CrossRefGoogle Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390CrossRefGoogle Scholar