No CrossRef data available.
Published online by Cambridge University Press: 09 February 2017
The compact radio and near-infrared (NIR) source Sagittarius A* has been observed in the context of two NIR triggered global VLT and VLBA campaigns at 43 GHz (7 mm) on May 16-18 2012 and October 4 2014. While on October 4 2014 Sgr A* remained in a quiescent state, a NIR flare on May 17 2012 is accompanied by an increase in flux density of 0.22 Jy at 7 mm delayed by 4.5±0.5 h. Additionally, Sgr A* seems to develop a weak secondary radio off-core component of 0.02 Jy at a position angle of 140° and an angular distance of 1.5 mas shortly before the peak of the flare. This spatial extension and the time delay are in the range of expected values for events casually connected by adiabatic expansion.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.