Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T21:47:50.295Z Has data issue: false hasContentIssue false

New Views From Galactoseismology: Rethinking the Galactic Disk-Halo Connection

Published online by Cambridge University Press:  02 August 2018

Allyson A. Sheffield
Affiliation:
LaGuardia Community College, City University of New York, 31-10 Thomson Ave., Long Island City, NY 11101USA email: asheffield@lagcc.cuny.edu
Kathryn V. Johnston
Affiliation:
Columbia University, Mail Code 5246, New York, NY, 10027, USA
Adrian M. Price-Whelan
Affiliation:
Princeton University, Princeton, NJ 08544, USA
Anastasios Tzanidakis
Affiliation:
Columbia University, Mail Code 5246, New York, NY, 10027, USA
Chervin F. P. Laporte
Affiliation:
Columbia University, Mail Code 5246, New York, NY, 10027, USA
Ting Li
Affiliation:
Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
Maria Bergemann
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
Branimir Sesar
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
Jeffrey L. Carlin
Affiliation:
LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present preliminary results from a study exploring the origin of Milky Way substructures, and show initial evidence of a common “kicked-out” formation mechanism for two low-latitude substructures. In this scenario, stars in these substructures formed in the disk and were subsequently “kicked-out” by an external perturbation, such as the merger of an accreted satellite, which created an oscillation in the Galactic disk. To test this origin scenario, we found the fraction of different stellar populations – M giants and RR Lyrae stars – in the Monoceros Ring (also known as GASS) and A13, supplementing a study of stellar populations in the Triangulum-Andromeda cloud. This work provides: (1) the first analysis of the GASS and A13 features based upon their stellar populations; and (2) preliminary evidence of disk stars in the Milky Way that have been relocated to the disk-halo interface due to vertical oscillations of the Milky Way’s disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Antoja, T., de Bruijne, J., Figueras, F., et al. 2017, A&A, 602, L13Google Scholar
Bernard, E. J., Ferguson, A. M. N., Schlafly, E. F., et al. 2016, MNRAS, 463, 1759Google Scholar
Crane, J. D., Majewski, S. R., Rocha-Pinto, H. J., et al. 2003, ApJL, 594, L119Google Scholar
Ferguson, D., Gardner, S., & Yanny, B., 2017, ApJ, 843, 141Google Scholar
Gómez, F. A., Minchev, I., O’Shea, B. W., et al. 2013, MNRAS, 429, 159Google Scholar
Grillmair, C. J. & Carlin, J. L., 2016, Tidal Streams in the Local Group and Beyond, 420, 87Google Scholar
Hawkins, K., Kordopatis, G., Gilmore, G., et al. 2015, MNRAS, 447, 2046Google Scholar
Johnston, K. V., Bullock, J. S., Sharma, S., et al. 2008, ApJ, 689, 936957Google Scholar
Johnston, K. V., Sheffield, A. A., Majewski, S. R., Sharma, S., & Rocha-Pinto, H. J., 2012, ApJ, 760, 95Google Scholar
Laporte, C. F. P., Gómez, F. A., Besla, G., Johnston, K. V., & Garavito-Camargo, N. 2016, arXiv:1608.04743Google Scholar
Martin, N. F., Ibata, R. A., & Irwin, M., 2007, ApJL, 668, L123Google Scholar
Majewski, S. R., Ostheimer, J. C., Rocha-Pinto, H. J., et al. 2004, ApJ, 615, 738Google Scholar
Li, T. S., Sheffield, A. A., Johnston, K. V., et al. 2017, ApJ, 844, 74Google Scholar
Morganson, E., Conn, B., Rix, H.-W., et al. 2016, ApJ, 825, 140Google Scholar
Newberg, H. J., Yanny, B., Rockosi, C., et al. 2002, ApJ, 569, 245Google Scholar
Price-Whelan, A. M., Johnston, K. V., Sheffield, A. A., Laporte, C. F. P., & Sesar, B., 2015, MNRAS, 452, 676Google Scholar
Rocha-Pinto, H. J., Majewski, S. R., Skrutskie, M. F., & Crane, J. D., 2003, ApJL, 594, L115Google Scholar
Rocha-Pinto, H. J., Majewski, S. R., Skrutskie, M. F., Crane, J. D., & Patterson, R. J., 2004, ApJ, 615, 732Google Scholar
Sheffield, A. A., Majewski, S. R., Johnston, K. V., et al. 2012, ApJ, 761, 161Google Scholar
Sheffield, A. A., Johnston, K. V., Majewski, S. R., et al. 2014, ApJ, 793, 62Google Scholar
Widrow, L. M., Gardner, S., Yanny, B., Dodelson, S., & Chen, H.-Y., 2012, ApJL, 750, L41Google Scholar
Williams, M. E. K., Steinmetz, M., Binney, J., et al. 2013, MNRAS, 436, 101Google Scholar
Xu, Y., Newberg, H. J., Carlin, J. L., et al. 2015, ApJ, 801, 105Google Scholar
Yanny, B., Newberg, H. J., Kent, S., et al. 2000, ApJ, 540, 825Google Scholar
Zolotov, A., Willman, B., Brooks, A. M., et al. 2010, ApJ, 721, 738Google Scholar