Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T22:51:32.796Z Has data issue: false hasContentIssue false

Multipolar planetary nebulae: Not as geometrically diversified as thought

Published online by Cambridge University Press:  30 August 2012

Sze-Ning Chong
Affiliation:
1Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan email: selina@milkyway.sci.kagoshima-u.ac.jp
Sun Kwok
Affiliation:
Department of Physics, The University of Hong KongPokfulam Road, Hong Kong email: sunkwok@hku.hk
Hiroshi Imai
Affiliation:
1Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan email: selina@milkyway.sci.kagoshima-u.ac.jp
Daniel Tafoya
Affiliation:
1Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan email: selina@milkyway.sci.kagoshima-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a general three-dimensional model of multipolar planetary nebulae (PNe). By rotating to different viewing angles and adjusting the angles between the multiple lobes, we demonstrate that the model is able to reproduce HST Hα images of 20 multipolar young PNe. Though this model only considers the geometrical projection effects, it significantly unifies the selected PNe and can be considered as a first-order fundamental model of the “multipolar” morphological class. This kind of model reduces complexity and is essential to pursuing of the shaping mechanism. In addition, we illustrate that under some special conditions, i.e. in certain viewing angles, or with low sensitivity, it will be hard to imagine that the projected image originates from a multipolar-lobed model.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Guerrero, M., Miranda, L. F., Riera, A., Velázquez, P. F., et al. 2008, ApJ, 683, 272 CrossRefGoogle Scholar
Harman, D. J., Bryce, M., López, J. A., Meaburn, J., & Holloway, A. J. 2004, MNRAS, 348, 1047 CrossRefGoogle Scholar
Hsia, C.-H., Kwok, S., Zhang, Y., Koning, N., & Volk, K. 2010, ApJ, 725, 173 CrossRefGoogle Scholar
Kwok, S., Chong, S.-N., Koning, N., Hua, T., & Yan, C.-Y. 2008, ApJ, 689, 219 CrossRefGoogle Scholar
Kwok, S., Chong, S.-N., Hsia, C.-H., Zhang, Y., & Koning, N. 2010, ApJ, 708, 93 CrossRefGoogle Scholar
Nakashima, J., Kwok, S., Zhang, Y., & Koning, N. 2010, AJ, 140, 490 CrossRefGoogle Scholar
Ratag, M. A., Pottasch, S. R., Dennefeld, M., & Menzies, J. 1997, A&AS, 126, 297 Google Scholar
Sahai, R. 2002, Rev. Mexicana AyA, 13, 133 Google Scholar
Sahai, R., Sánchez Contreras, C., & Morris, M. 2005, ApJ, 620, 948 CrossRefGoogle Scholar
Sahai, R., Morris, M. R., & Villar, G. G. 2011, AJ, 141, 134 CrossRefGoogle Scholar
Steffen, W. 2011, IEEE TVCG, vol. 17, no. 4, p. 454 Google Scholar
Ueta, T., Murakawa, K., & Meixner, M. 2007, AJ, 133, 1345 CrossRefGoogle Scholar
Wang, M.-Y., Hasegawa, T. I., & Kwok, S. 2008, ApJ, 673, 264 CrossRefGoogle Scholar