Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T19:32:33.215Z Has data issue: false hasContentIssue false

Molecular dust precursors in envelopes of oxygen-rich AGB stars and red supergiants

Published online by Cambridge University Press:  30 December 2019

Tomasz Kamiński*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Submillimeter Array Fellow, email: tkaminsk@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Condensation of circumstellar dust begins with formation of molecular clusters close to the stellar photosphere. These clusters are predicted to act as condensation cores at lower temperatures and allow efficient dust formation farther away from the star. Recent observations of metal oxides, such as AlO, AlOH, TiO, and TiO2, whose emission can be traced at high angular resolutions with ALMA, have allowed first observational studies of the condensation process in oxygen-rich stars. We are now in the era when depletion of gas-phase species into dust can be observed directly. I review the most recent observations that allow us to identify gas species involved in the formation of inorganic dust of AGB stars and red supergiants. I also discuss challenges we face in interpreting the observations, especially those related to non-equilibrium gas excitation and the high complexity of stellar atmospheres in the dust-formation zone.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Alcolea, J., Bujarrabal, V., Planesas, P., et al. 2013, A&A, 559, A93 Google Scholar
Álvarez-Barcia, S., & Flores, J. R. 2016, Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 18, 6103 10.1039/C5CP06676JCrossRefGoogle Scholar
Cherchneff, I. 2006, A&A, 456, 1001 Google Scholar
Cherchneff, I. 2012, A&A, 545, A12 Google Scholar
Cherchneff, I. 2013, EAS Publications Series, 175 10.1051/eas/1360020CrossRefGoogle Scholar
De Beck, E., Vlemmings, W., Muller, S., et al. 2015, A&A, 580, A36 Google Scholar
De Beck, E., Decin, L., Ramstedt, S., et al. 2017, A&A, 598, A53.Google Scholar
Decin, L., Richards, A. M. S., Millar, T. J., et al. 2016, A&A, 592, A76 Google Scholar
Decin, L., Richards, A. M. S., Waters, L. B. F. M., et al. 2017, A&A, 608, A55 Google Scholar
Decin, L., Danilovich, T., Gobrecht, D., et al. 2018a, ApJ, 855, 113 10.3847/1538-4357/aaab6aCrossRefGoogle Scholar
Decin, L., Richards, A. M. S., Danilovich, T., et al. 2018b, A&A, 615, A28 Google Scholar
Dell’Agli, F., Garca-Hernández, D. A., Rossi, C., et al. 2014, MNRAS, 441, 1115 CrossRefGoogle Scholar
Ferrarotti, A. S., & Gail, H.-P. 2002, A&A, 382, 256 Google Scholar
Gail, H.-P., & Sedlmayr, E. 1998, Faraday Discussions, 109, 303 CrossRefGoogle Scholar
Gail, H.-P., Wetzel, S., Pucci, A., et al. 2013, A&A, 555, A119 Google Scholar
Gail, H.-P., & Sedlmayr, E. 2013, Physics and Chemistry of Circumstellar Dust Shells, Cambridge Astrophysics Series, Cambridge University Press Google Scholar
Garrison, R. F. 1997, JAAVSO, 25, 70 Google Scholar
Gobrecht, D., Cherchneff, I., Sarangi, A., et al. 2016, A&A, 585, A6 Google Scholar
Humphreys, R. M., Helton, L. A., & Jones, T. J. 2007, AJ, 133, 2716 10.1086/517609CrossRefGoogle Scholar
Höfner, S., Bladh, S., Aringer, B., et al. 2016, A&A, 594, A108 Google Scholar
Jeong, K. S., Winters, J. M., Le Bertre, T., et al. 2003, A&A, 407, 191 Google Scholar
Kamiński, T., Schmidt, M. R., & Menten, K. M. 2013a, A&A, 549, A6 Google Scholar
Kamiński, T., Gottlieb, C. A., Menten, K. M., et al. 2013b, A&A, 551, A113 Google Scholar
Kamiński, T., Gottlieb, C. A., Young, K. H., et al. 2013c, ApJS, 209, 38 10.1088/0067-0049/209/2/38CrossRefGoogle Scholar
Kamiński, T., Wong, K. T., Schmidt, M. R., et al. 2016, A&A, 592, A42 Google Scholar
Kamiński, T., Müller, H. S. P., Schmidt, M. R., et al. 2017, A&A, 599, A59 Google Scholar
Karovicova, I., Wittkowski, M., Ohnaka, K., et al. 2013, A&A, 560, A75 Google Scholar
Keenan, P. C., Deutsch, A. J., & Garrison, R. F. 1969, ApJ, 158, 261 10.1086/150189CrossRefGoogle Scholar
Khouri, T., Waters, L. B. F. M., de Koter, A., et al. 2015, A&A, 577, A114 Google Scholar
Leitner, J., Hoppe, P., Floss, C., et al. 2018, Geochimica et Cosmochimica Acta, 221, 255 10.1016/j.gca.2017.05.003CrossRefGoogle Scholar
Liljegren, S., Höfner, S., Nowotny, W., et al. 2016, A&A, 589, A130 Google Scholar
Liljegren, S., Höfner, S., Freytag, B., et al. 2018, arXiv:1808.05043.Google Scholar
Milam, S. N., Apponi, A. J., Woolf, N. J., et al. 2007, ApJ, 668, L131 10.1086/522928CrossRefGoogle Scholar
Nittler, L. R., Alexander, C. M. O., Gallino, R., et al. 2008, ApJ, 682, 1450 10.1086/589430CrossRefGoogle Scholar
Norris, B. R. M., Tuthill, P. G., Ireland, M. J., et al. 2012, Nature, 484, 220 10.1038/nature10935CrossRefGoogle Scholar
Ohnaka, K., Weigelt, G., & Hofmann, K.-H. 2016, A&A, 589, A91 Google Scholar
Plane, J. M. C. 2013, Phil. Trans. of the Royal Society of London Series A, 371, 20120335 CrossRefGoogle Scholar
Sharp, C. M., & Huebner, W. F. 1990, ApJS, 72, 417 10.1086/191422CrossRefGoogle Scholar
Sloan, G. C., & Price, S. D. 1998, ApJS, 119, 141 10.1086/313156CrossRefGoogle Scholar
Takigawa, A., Kamizuka, T., Tachibana, S., et al. 2017, Science Advances, 3, eaao214910.1126/sciadv.aao2149CrossRefGoogle Scholar
Takigawa, A., Stroud, R. M., Nittler, L. R., et al. 2018, ApJ, 862, L13 10.3847/2041-8213/aad1f5CrossRefGoogle Scholar
Tenenbaum, E. D., & Ziurys, L. M. 2009, ApJ, 694, L59 CrossRefGoogle Scholar
Tenenbaum, E. D., & Ziurys, L. M. 2010, ApJ, 712, L93 CrossRefGoogle Scholar
Wong, K. T., Kamiński, T., Menten, K. M., et al. 2016, A&A, 590, A12 Google Scholar